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Abstract Porous media oil-water two-phase fluid-solid coupling is critical for oil-gas exploitation ef-
ficiency and environmental protection, but traditional mesh-based methods (FDM, FEM, FVM) suffer
from mesh generation difficulties, poor dynamic adaptability, and numerical dissipation. The General-
ized Finite Difference Method (GFDM), a promising meshless approach, offers a solution. This review
synthesizes research progress on upwind GFDM in this coupling problem. It first sorts the evolution of
porous media fluid-solid coupling theory (from Terzaghi’s to multi-physics extensions) and summariz-
es mesh-based/meshless methods, focusing on GFDM’s development and cross-field applications. It
then analyzes how upwind-GFDM integration enhances convection-dominated flow stability/accuracy,
addressing traditional meshless upwind challenges. Key gaps are identified: limited GFDM use in frac-
tured porous media, unoptimized node layout/influence domains, and insufficient Al integration. Finally,
the review concludes upwind GFDM provides a novel technical pathway for complex coupling prob-
lems, laying a foundation for meshless porous media simulators. It outlines future directions (fractured
reservoir expansion, parameter optimization, Al fusion) to improve exploitation efficiency and environ-
mental protection.
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1 Introduction problem of oil-water two-phase flow in porous

. . . media, scientific basis can be provided for the
Porous media are widely present in nature

. . . rational exploitation of underground oil reservoirs
and engineering practices, such as underground

. . . . and environmental protection work such as the
oil reservoirs, soil, and rocks. The oil-water

L . revention of groundwater pollution.
two-phase flow behavior in underground oil prev groundwater pofiu
reservoirs directly affects the efficiency of oil and Scholars have conducted research on the
gas exploitation and the risk of environmental fluid-solid coupling problem in porous media and

pollution. By studying the fluid-solid coupling achieved a series of remarkable results in aspects
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such as fluid-solid coupling theory, numerical
solution technology, and engineering applications.
Traditional mesh-based numerical solution
methods face difficulties in efficiently generating
high-quality meshes when dealing with static
or dynamic fluid-solid coupling computational
domains with complex boundary shapes. To
overcome the limitations of mesh-based numerical
solution methods, meshless numerical solution
methods have developed rapidly in engineering
calculations. This method only uses point clouds
to discretize the computational domain, and
the topological constraints for generating point
clouds are much smaller than those for discrete
meshes, thus enabling flexible discretization of the

computational domain.

Despite the progress made in the field, there
remain notable gaps in the application of GFDM,
especially the upwind GFDM, to the two-phase
fluid-solid coupling of porous media. Current
research on meshless methods in porous media
tends to focus more on geomechanics and solid
mechanics, with relatively limited attention paid
to reservoir seepage problems, and even less to
scenarios involving two-phase flow. While efforts
have been made to integrate upwind schemes with
GFDM for addressing convection-dominated flow
issues, there is still a lack of systematic analysis
regarding how this integrated approach performs
in the context of two-phase fluid-solid coupling.

Another key gap lies in the application of
GFDM to fractured porous media—a critical
area for the development of low-permeability
and tight reservoirs—where research remains
insufficient. Additionally, there is significant room
for improvement in the computational efficiency
of GFDM when applied to large-scale engineering
models, particularly through the optimization
of node layout and the refinement of influence
domain selection. Moreover, the potential of com-

bining GFDM with emerging technologies like
artificial intelligence to enhance its adaptability
and accuracy in complex scenarios has not yet
been fully explored, leaving a valuable avenue for

future investigation.

Against this backdrop, this review aims to
systematically synthesize the existing research
progress on the application of upwind GFDM
in the two-phase fluid-solid coupling of porous
media. By providing a comprehensive overview
of the current state of knowledge, identifying key
challenges, and outlining promising directions for
further study, this work seeks to lay a foundation
for the development of general meshless numerical
simulators for porous media flow, while also offer-
ing new insights to support the optimization of oil
and gas exploitation strategies and environmental
protection efforts.

2 Fluid-Solid Coupling Problems in
Porous Media

Terzaghi " first considered the mechanism of
fluid flow and medium deformation in deformable,
saturated porous media, proposed the concept of
effective stress, and established a one-dimensional
consolidation model. Biot ™ *! assumed that the
material is isotropic and has linear elastic small
deformation characteristics, the pore space of the
material is saturated with incompressible fluid,
and the fluid flow in the pore skeleton satisfies
Darcy's law. On the basis of this assumption, a
relatively complete three-dimensional consol-
idation theory was established. Subsequently,
Biot extended this theory to the analysis of the
coupling effect between fluid and pore pressure in
anisotropic porous media ¥ and dynamic analysis
Bl Since then, the development of porous media
fluid-solid coupling theory has begun to consider

the characteristics of different porous materials
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and establish corresponding fluid-solid coupling
mathematical models based on these characteris-
tics. Lubinski ) and Geertsma " both discussed
the Biot equation in the elastic theory of porous
media. Zienkiewicz ™ proposed the generalized
Biot theory considering geometric and material
nonlinearity. Oda " used the fracture geometric
tensor to express the relationship between rock

[10]

mass seepage and deformation. Savage " applied

Biot's three-dimensional consolidation theory to

1. " considered

isotropic poroelastic media. Li et a
the compressibility of solid and fluid phases, the
capillary pressure between fluid phases, derived
the fluid-solid coupling control equation on the
assumption that fluid flow conforms to Darcy's
law, and discussed the numerical solution method
of the two-phase immiscible fluid-solid coupling
model in detail. Li et al. "*'* discussed the struc-
ture-mechanics interaction problem considering
the consolidation effect of saturated soil and
used the non-classical continuum finite element
method for local strain analysis. Zhang et al. "> '*)
extended the generalized Biot formula established
by Zienkiewicz et al. to the study of nonlinear

problems of saturated soil consolidation.

With the development of the petroleum
industry and the increasing demand for solving
complex petroleum engineering problems, the
research on fluid-solid coupling in porous media
has attracted widespread attention in the fields of
petroleum drilling, exploitation, and development.
In the process of oil and gas exploitation, changes
in pore fluid pressure will affect the physical
properties of the rock matrix such as porosity and
permeability, thereby affecting the migration of
fluids in underground reservoirs. By simulating
the interaction between pore fluid and rock
skeleton, the productivity changes, seepage laws,
pressure distribution, etc. of the reservoir can be

predicted, providing a scientific basis for reservoir

management and decision-making.

Lewis "7 ' first considered disasters such as
land subsidence caused by oil and gas exploitation,
established an underground fluid-solid coupling
model, and analyzed the influence of the coupling
effect between pore fluid and rock mechanism
on oil and gas production. Subsequently, the
theoretical research on fluid-solid coupling in
porous media incorporated the consideration of
temperature field. Lewis, Wong, Settar et al. """
> have done a lot of innovative work on the
thermo-hydro-mechanical coupling theory and its
engineering applications in reservoir engineering.
Tortike, Ali et al. ®*?* considered the development
mode of steam thermal recovery in heavy oil
reservoirs and established a thermo-hydro-me-
chanical coupling mathematical model considering
oil, gas, and water phases. Neaupane et al. **
established a thermo-hydro-mechanical coupling
model in fractured rock masses, used the finite
element method for solution and analysis, and
used the model to discuss wellbore stability. Bear
7 studied the correlation between regional stress,
temperature, and changes in rock permeability
during geothermal exploitation. Faquhar ** found
that stress changes can cause changes in rock
elastic modulus and permeability, and there is a
linear relationship between Young's modulus and
permeability. Bouteca ' found through experi-
ments that the volume coefficient of sandstone is a
function of pore pressure and confining pressure.

[30]

Fung regarded geotechnical deformation as
elastoplastic deformation, extended the two-di-
mensional isothermal seepage fluid-solid coupling
model to a thermal recovery model, and solved it
using the explicit alternating method. Sukirnan °"
considered the three phases of oil, gas, and water,
and the elastoplastic characteristics of rocks, used
the Mohr-Coulomb yield criterion to judge the

failure situation, solved the fully coupled fluid-sol-
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id control equation using the finite element method
and implicit iteration method, and used the results
to simulate the surface subsidence phenomenon.

Gutierrez %

compared the results of conventional
reservoir numerical simulation and fluid-solid
coupled reservoir numerical simulation when pre-
dicting the temporal and spatial changes of fluid
pressure, proving that the former cannot analyze
the actual situation of reservoir compression only

by using the rock compressibility coefficient.

In the 1980s and 1990s, domestic research
institutions and scholars also began to apply the
porous media fluid-solid coupling theory and
model to solve practical problems in reservoir
development and management. Ran et al. 7"
established a mathematical model of multiphase
fluid-solid coupling in underground reservoirs,
which considers changes in parameters such as
permeability and porosity, and uses the alternating
iteration of finite difference and finite element
for solution. The original model (uncoupled),
elastic model, and plastic model were used for
verification respectively, indicating that the
coupling effect and the selection of constitutive
model have a significant impact on the simulation

1. B3 et al. considered factors

results. Dong et a
such as elastoplastic deformation and creep, and
established a mathematical model of fluid flow in
variably saturated reservoirs. The model uses the
finite element method to solve the unknowns of
displacement and pore pressure, and the effective-
ness of the model is verified through a single well
production example. Xue et al. ***” established a
mathematical model of seepage and geomechanics
coupling in immiscible saturated porous media,
derived and solved the finite element calculation
format of the model using the decoupling method,
and studied the coupling effect between pore fluid
and stress field in the near-wellbore region. Liu
14 established a fluid-solid coupling mathematical

model for low-permeability reservoirs considering
the threshold pressure gradient and gave the
numerical solution. Xu *" studied the fluid-solid
coupling mechanism in loaded formations under
a two-dimensional stress field and obtained
the analytical solutions of pore pressure and
medium stress under coupled conditions. Wang **
established a thermo-hydro-mechanical coupling
mathematical model using basic laws such as
mass (energy) conservation and thermodynamics,
and derived the corresponding finite element
calculation format. Xiong ! took permeability,
porosity, and compressibility as functions of
pressure and established a fluid-solid coupling
mathematical model for multiphase fluid flow

41 used

in deformable porous media. Fan et al.
the finite difference method to provide a coupled
solution for reservoir seepage and elastic defor-
mation of geotechnical interfaces, studied the time
changes of strain, porosity, and permeability, and
calculated the significant changes of parameters

near the wellhead with time.

Fractures are the main seepage and
production channels in low-permeability or tight
reservoirs. In such unconventional reservoirs, the
medium deformation effect will cause changes in
fracture and matrix seepage parameters, which
will have a great impact on production. Therefore,
scholars in the industry have established
various fluid-solid coupling mathematical models
considering fracture dynamic behavior in real

1 used the finite

fractured reservoirs. Ji et al. |
element method to solve the established fluid-solid
coupling mathematical model of single-phase flow

1. ¥4 considered

in dual media. Li et al.,, Xu et a
the nonlinear fluid-solid coupling seepage mech-
anism in which seepage parameters change with
effective stress, established a fluid-solid coupling
seepage model for deformable dual-porosity

media, and gave the three-dimensional finite
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element calculation format. Liu *** established
an equivalent continuum model suitable for
seepage in fractured sandstone reservoirs, derived
the equivalent processing method of seepage field
and geotechnical deformation field parameters
considering the influence of fractures, and gave
the coupled calculation method based on the finite
difference method and finite element method.

It should be noted that as an innovative re-
search that first applies the meshless method to the
field of reservoir numerical simulation, this paper
only considers the two-phase fluid-solid coupling
problem in general porous media, aiming to lay a
sufficient theoretical foundation for the subsequent
meshless method research considering fracture

dynamic behavior in fractured porous media.

3 Mesh-Based Numerical Methods

So far, the main numerical solution methods
for the fluid-solid coupling problem of oil-water
two-phase flow in porous media include the Finite
Difference Method (FDM) ", Finite Element
Method (FEM) ©'! and Finite Volume Method
(FVM) B2,

A brief introduction to the three methods and
their advantages and disadvantages is as follows:

(1) Finite Difference Method (FDM): The
finite difference method approximates the differen-
tial equation at discrete grid points. Using methods
such as Taylor series expansion, the derivatives
of the differential equation are expressed by the
difference quotients of the unknown function
values at the grid nodes, thereby converting the
differential equation into a system of algebraic
equations, which can be solved numerically by
iterative methods. The finite difference method is
relatively easy to implement, but its accuracy is

easily limited by grid density and step size, and it

is necessary to select an appropriate grid size and
step size to balance computational efficiency and
accuracy; moreover, this method is not suitable for
handling complex geometric shapes and boundary
conditions, especially high-dimensional problems.
In addition, when dealing with high-order
differential equations and high-gradient problems,
the finite difference method may require more
complex techniques and larger computational
load.

(2) Finite Element Method (FEM): The
finite element method divides the computational
domain into a finite number of interconnected
but non-overlapping elements. Select appropriate
nodes within each element as interpolation points
to construct mathematical interpolation functions.
The differential equation is expressed using the
interpolation functions of variables. Then, the
discrete format of the differential equation is ob-
tained through the weighted residual method and
variation principle, thereby obtaining the algebraic
equations on each element. Finally, the overall
system of algebraic equations is established by in-
tegrating the relationships between elements, and
the numerical solution can be obtained by solving
this linear system of algebraic equations. The finite
element method has better numerical stability and
accuracy when dealing with high-dimensional
problems and high-order differential equations,
so it is widely used in numerical simulation and
analysis in fields such as structural mechanics,
heat conduction, and fluid mechanics. However,
when dealing with complex geometric shapes and
nonlinear problems, the computational load of the
finite element method is usually large.

(3) Finite Volume Method (FVM): The finite
volume method divides the computational domain
into a finite number of volume elements. A set
of discrete equations is obtained by integrating

the conservation equation within each volume



ASEIG

Vol. 1, Issue. 1 ( Dec. 2025)

element, where the unknowns are the values of
the dependent variables at the grid nodes. Then,
the overall system of equations is established by
calculating the fluxes between adjacent volume
elements, and the numerical solution is finally
obtained by solving this system of equations. The
finite volume method naturally associates physical
quantities with control volumes, making it easier
to understand and analyze physical processes;
it is suitable for handling partial differential
equations in conservative form and can accurately
maintain conserved quantities. Therefore, the
finite volume method is often used in numerical
simulation and analysis of problems such as fluid
dynamics and heat and mass transfer. However,
the finite volume method may face computational
challenges when dealing with nonlinear problems
and highly non-uniform grids, that is, it requires
more memory and computing resources, and the
computational load is large.

It can be seen that the above methods all
need to first divide the computational domain
into a series of meshes. For example, the finite
element method needs to divide elements, the
finite difference method uses grids, and the finite
volume method divides into volume elements.
The nodes on the meshes in the computational
domain are interconnected through the meshes
themselves, forming the application basis of the
above traditional mesh-based numerical solution
methods. However, the mesh system may face
some challenges and difficulties in the solution
process of the porous media fluid-solid coupling

numerical model P+

(1) Difficult mesh generation: Mesh-based
methods require mesh generation, and due to the
complex geometric shape of the porous media
computational domain, generating suitable meshes
is often very difficult and time-consuming.

(2) Mesh subdivision incompatibility: The
flow and phase change properties in porous media
may lead to mesh subdivision incompatibility. If
the mesh is distorted during the flow process, the
mesh quality will decrease, which will seriously
affect the accuracy of the solution, reduce compu-
tational efficiency, and even lead to computational
failure. In this case, mesh reconstruction or adap-
tive mesh adjustment is required, which will have
a significant impact on computational accuracy
and speed.

(3) Numerical dissipation: Mesh-based meth-
ods will introduce numerical dissipation during
the calculation process, leading to a decrease in
the accuracy of the numerical solution, and it is
difficult to capture small-scale phenomena.

4 Meshless Numerical Solution Methods

Meshless methods adopt a node-based
discretization method, avoiding the difficulties
of mesh generation and subdivision faced by the
above traditional mesh-based numerical methods:

(1) Meshless methods only use point clouds
to discretize the computational domain, and the
topological constraints for generating point clouds
are much smaller than those for mesh discretiza-
tion. The point clouds in meshless methods can
use simple data structures (such as arrays or linked
lists) to store node position information. In con-
trast, traditional mesh-based numerical methods
need to use two-dimensional or three-dimensional
arrays to store the properties and state variables of
mesh elements, which increases the complexity of
the data structure.

(2) Meshless methods can adaptively move
and adjust nodes in the porous media computa-
tional domain to adapt to the properties of flow
and phase change, thereby avoiding the problem
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of mesh subdivision incompatibility.

(3) Since meshless methods do not rely on
meshes, there is no numerical dissipation effect
caused by mesh size and shape, and the details
of flow and phase change can be captured more

accurately.

The research on meshless methods originated
in the 1970s. Compared with the finite element
method, which was the mainstream numerical
solution method at that time, meshless methods
had not attracted widespread attention from
scholars, and the research progress was slow.
Lucy P first proposed the Smoothed Particle
Hydrodynamics (SPH) method and successfully
introduced it to boundary-free astrophysics
problems. This method uses discrete particles to
describe fluids that are continuously distributed
macroscopically but still particles microscopically,
and is regarded as the first meshless method in the
industry. However, its computational accuracy
and stability are not satisfactory. Subsequently,
Libersky et al. ' extended the SPH method to the
study of diaphragm impact problems, and Chen et
al. ® improved the SPH method by introducing a
viscosity coefficient, which improved its stability.
Since then, the research on meshless methods
has almost stagnated. In the 1990s, Nayroles et
al. ” applied the Moving Least Square (MLS)
method to the Galerkin method to form the Diffuse
Element Method (DFM). This method only needs
a series of discrete points and boundaries to
describe the solution domain, initially possessing
the characteristics of meshless methods. Sub-
sequently, Belyschko et al. ‘" considered some
terms in the shape function derivative expression
that were ignored by Nayroles based on MLS,
and used Lagrange multipliers to handle intrinsic
boundary conditions, forming the Element-free
Galerkin Method (EFGM). Compared with the

SPH method, this method has a slightly higher
computational cost but higher computational
accuracy and stability. EFGM was later applied

to dynamic crack propagation simulation '*> ¥

1641 and

and three-dimensional impact analysis
achieved good simulation results. Since then,
meshless methods have been widely used in

. . . . . 65-69
various scientific and engineering problems .

At present, the research directions of mesh-
less methods are divided into boundary type and
domain type according to whether the interpola-
tion basis function can satisfy the control equation.
Among them, the boundary-type meshless method
is similar to the boundary element method. On the
basis of inheriting the advantage of the boundary
element method in reducing the dimension of
the problem to be solved, it only needs boundary
collocation points to realize simulation calcula-
tion, and avoids the complex singular and nearly
singular integral calculations in the boundary
element method. At present, popular bounda-
ry-type meshless methods include the Boundary
Knot Method (BKM) ", Method of Fundamental
Solutions (MFS) ", Singular Boundary Method
(SBM) "> ! Boundary Element-free Method
(BEFM) ", Regularized Meshless Method (RMM)
(1" etc. The above methods have achieved varying
degrees of success, but problems such as the easy
generation of full-rank coefficient matrices and
the dependence on the selection of interpolation
basis functions (fundamental solutions) limit the
application and development of such methods
in practical engineering problems ", Different
from boundary-type methods, localized domain
methods introduce the concept of computational
domain localization, that is, the entire compu-
tational domain can be divided into multiple
subdomains, so that the linear system generated by

discretizing the control equations will be a sparse
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matrix. Therefore, a variety of different effective
solution methods can be used to obtain numerical
solutions accurately and quickly. Moreover, such
methods do not depend on the selection of inter-
polation basis functions (fundamental solutions),
so they can handle initial and boundary value
problems of various partial differential equations
and have broader application prospects. At present,
commonly used localized domain methods mainly
include the Element Free Galerkin Method (EFGM)
U1 Diffuse Element Method (DEM) ", Smoothed
Particle Hydrodynamics (SPH) ", and Generalized
Finite Difference Method (GFDM) ™), etc.

In the field of geomechanics research, Zhou
et al., Kou et al. ®"™* were the first to introduce
EFGM into the research of fracture mechanics
problems in geotechnical engineering, and
predicted arch dam cracking and groundwater flow
through EFGM simulation. Ge et al. ™ introduced
EFGM into seepage calculation with free surfaces.
Zhang and Pang *"** used EFGM to calculate the
bending problem of foundation slabs. Wang et al.
(5.9 regarded soil as an ideal medium and used
EFGM to solve the consolidation equation. Zhang
PU first gave the error analysis of the discrete
equation of consolidation EFGM, indicating that
the refinement degree of the mesh integration
structure has a great influence on computational
accuracy and stability. Pang ”*** used EFGM to
simulate slope excavation in geotechnical engi-
neering, contact (friction) between two objects,
and discontinuous surfaces.

In the field of solid mechanics research,
B3] constructed an incremental FEM-EFGM

coupled solution technology using surface force

Yang

coupling technology, which can solve general
solid mechanics problems. He et al. " applied
the FEM-EFGM coupled solution technology

to the analysis of dynamic crack propagation

problems. Liu et al. ' established the calculation
formula of the FEM-EFGM method, and verified
the feasibility of introducing essential boundary
conditions through Lagrange multipliers through
examples. Wang et al. "' used EFGM to
simulate crack propagation and plate bending.

1. 13191 established frameworks based

Zhang et a
on the compactly supported weighted residual
meshless method and the least square collocation
meshless method respectively, and the latter has
considerable computational accuracy, efficiency,
and stability. Cai et al. "”"'* proposed a meshless
natural element method for solving plane prob-
lems of elasticity based on the natural neighbor
approximation displacement function and applied
it to underground engineering problems. Lu et al.
1011 realized the solution error estimation of the
natural element method based on the Z-Z method.
Dai "% derived an algorithm for three-dimensional
natural neighbor coordinates and their derivatives
based on the Lasserre convex polyhedron volume
formula, and gave the flow chart of the three-di-
mensional natural element method algorithm.
Luan, Tian et al. """ combined the element-free
method with the manifold method based on
finite cover to form the finite cover element-free
method, which was used to analyze the fracture
characteristics and crack propagation of complex

rock masses.

In the field of fluid mechanics research, Qiu

et al. '

used EFGM to numerically simulate the
two-dimensional incompressible viscous flow
around a cylinder. Fang et al. "'* used the SPH
method to simulate liquid sloshing with a free
liquid surface in a liquid storage container. Wang
et al. """ developed a set of meshless algorithms
for solving unsteady flows. This method automat-
ically generates point clouds by filling and placing

points according to regions, and the comparison
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between the calculation results and experimental
measurement results verifies the effectiveness and
practicality of the method.

For underground seepage problems, Zeng et
al. 1"** ! discussed single-phase seepage problems
using EFGM. Huang and Shu "**'**! applied
EFGM and the Moving Least Squares (MLS)
meshless method to the solution of reservoir seep-
age problems and derived the meshless discrete
format for oil-water two-phase seepage problems.
Li " first introduced the meshless method into
numerical well testing, and used the Minimum
Weighted Least Squares (MWLS) method
combined with EFGM to solve the well test inter-
pretation model considering complex boundaries,
heterogeneity, and oil-water two-phase fault-block
reservoirs, achieving good results in computational
accuracy and efficiency. Rao et al. "> used the
MLS method combined with the MWLS method
to study the water-gas flow problem in dual-media
shale gas reservoir models. The reservoir example
with complex boundary shapes verified the
high accuracy, stability, and convergence of the
proposed method, revealing the great application
potential of the meshless method in reservoir
seepage problems.

Combined with the above research status of
meshless methods, it can be seen that as a new
type of numerical calculation method, the research
of meshless methods is mainly concentrated in the
fields of geomechanics and solid mechanics. As a
typical porous medium, the application research of
meshless methods on the seepage mechanism of
underground reservoirs is slow and the results are
few. The complexity, nonlinearity, and multi-scale
characteristics of underground reservoir seepage
problems limit the application of traditional nu-
merical methods. However, the mesh-independent
characteristics of meshless methods will provide

new possibilities for more flexible, accurate, and

convenient seepage prediction. Therefore, promot-
ing the application research of meshless methods
in porous media seepage problems may provide
important references for in-depth understanding
of porous media seepage mechanisms, optimizing
energy development strategies, and improving
energy exploitation efficiency.

5 the Generalized Finite Difference
Method

GFDM is one of the most promising methods
among meshless methods **'*. Developed from
the classical finite difference method, GFDM
expresses the partial derivatives of various orders
of unknown quantities in the control equation as
a linear combination of the function values of
adjacent nodes in the subdomain based on the
multivariate function Taylor series expansion and
weighted least square fitting in the subdomain,
overcoming the dependence of traditional FDM
on meshes. GFDM can handle problems with
discontinuities, singular points, and high-order
derivatives. In addition, the consistency in
principle between GFDM and FDM provides
convenience for them to use similar nonlinear
solution strategies (such as the Newton iteration
method). That is, in practical applications, there
is no need to write a dedicated NR solver for
GFDM, which obviously reduces the technical
difficulty of forming a general meshless numerical
simulator for porous media multiphase flow based
on GFDM.

At present, GFDM is developing rapidly
and is widely used in solving various scientific
and engineering problems, including shallow
water equations ">, high-order partial differential

9 transient heat conduction analysis

[131]

equations

130 . .
[130] , water wave interaction

[133]

, stress analysis

[132]

, inverse heat source problems , seismic
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wave propagation problems **

135-137]

, coupled thermo-

elasticity problems '
[138]

, stochastic analysis of
groundwater flow ', and some typical differen-
tial equation problems (such as unsteady Burgers'

139, 140 . . . .
(391400 " nonlinear convection-diffusion

equations
equations """, time-fractional diffusion equations
U42]y The generalized finite difference method only
needs to arrange a set of nodes in the computa-
tional domain to achieve accurate solution of the
control equation, saving the time-consuming and
laborious mesh division and numerical integration
of the complex geometric features of the computa-
tional domain in the finite element method, finite
difference method, and boundary element method.
It is an efficient and high-precision numerical

modeling method.

For flow problems, when dealing with certain
physical parameters in the control equation, it
is often necessary to adopt an upwind scheme.
In meshless methods, the upwind scheme is
generally realized by modifying the influence
domain of nodes, including the upwind influence
domain method that moves the central node to the

[143]

upstream direction and the partial influence

domain method that includes more upstream nodes
in the influence domain of the central node "**.
However, due to the possible complexity of the
actual flow field, it is difficult to form a stable
upwind effect by modifying the node influence
domain, and the computational accuracy is also
difficult to be well guaranteed. Sridar and Balakr-

U] proposed a finite difference method for

ishnan
computational fluid dynamics based on the upwind
least square method. Saucedo-Zendejo et al. ''*"
used the upwind GFDM to solve the three-dimen-
sional free surface flow in the mold filling process.
Michel et al. "*" applied the upwind GFDM to
simulate the solution mining process at the micro
and macro scales. Shao et al. !'*"

GFDM to solve the Stokes interface problem.

used the upwind

Immiscible two-phase flow is a basic case of
porous media flow problems, such as oil-water

. . 149-
two-phase flow in underground reservoirs '

" The relative phase permeability in the
porous media two-phase flow equation is a
typical physical parameter that needs to adopt

the upwind scheme. Rao et al. ">

applied the
upwind GFDM to the modeling of single-phase
heat and mass transfer in porous media, adopted
a sequential coupled format, and proposed a
high-precision convection-diffusion equation
solution method based on the upwind GFDM,
which also means the great application potential
of the upwind GFDM in porous media seepage
problems. Subsequently, Rao et al. "> "** applied
the generalized finite difference method (GFDM)
based on the fully implicit scheme to oil-water
two-phase flow. To enable GFDM to handle
singular source-sink terms, Rao et al. "> further
developed an integral-form extended finite volume
method (EFVM) based on GFDM. This method
can maintain local mass conservation in the sense
of least squares and directly invoke the nonlinear
solvers for various seepage models embedded in
existing simulators. Currently, the extended finite
volume method has been successfully applied to
black-oil models and compositional models "**
1 Tn addition, Rao et al. "** extended EFVM to
fractured hydrocarbon reservoirs and developed a

meshless discrete fracture model.

6 Conclusion

This review systematically examines the ap-
plication of upwind Generalized Finite Difference
Method (GFDM) in the two-phase fluid-solid
coupling of porous media, synthesizing the
evolution of relevant theories, numerical methods,
and current research progress, while identifying

key research gaps and future directions. The main
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conclusions are as follows:

First, the development of porous media
fluid-solid coupling theory has progressed
from basic consolidation models to complex
multi-physics coupling frameworks. Starting with
Terzaghi's one-dimensional consolidation model
and Biot's three-dimensional consolidation theory,
subsequent studies have integrated nonlinearity,
anisotropy, thermal effects, and elastoplastic
deformation, providing a solid theoretical basis
for understanding the interaction between fluid
flow and medium deformation in porous media.
However, the practical application of these
theories still relies heavily on efficient numerical
methods, especially in addressing the complexity

of underground reservoir scenarios.

Second, traditional mesh-based numerical
methods (FDM, FEM, FVM) have played
important roles in solving porous media fluid-solid
coupling problems but are constrained by inherent
limitations. Difficulties in mesh generation for
complex domains, poor adaptability to dynamic
flow and phase change processes, and the presence
of numerical dissipation limit their performance
in complex engineering applications. Meshless
methods, by contrast, have emerged as a powerful
alternative, with GFDM standing out due to its
meshless nature, consistency with traditional
FDM (facilitating the use of mature nonlinear
solvers), and ability to handle discontinuities and
high-order derivatives. The integration of upwind
schemes with GFDM further enhances its stability
and accuracy in solving convection-dominated
flow problems, addressing a key shortcoming of
traditional meshless methods in achieving reliable

upwind effects.

Third, despite the promising potential of up-
wind GFDM, several critical research gaps persist.
The application of GFDM in porous media has
been primarily limited to single-phase seepage and

14

general geomechanics, with insufficient focus on
two-phase fluid-solid coupling—especially in frac-
tured porous media, which are crucial for low-per-
meability oil and gas reservoirs. Additionally,
the computational efficiency of GFDM for large-
scale engineering models needs improvement,
with opportunities for optimization in node layout
and influence domain selection. Furthermore, the
integration of GFDM with emerging technologies
such as artificial intelligence to enable intelligent
parameter optimization and adaptive simulation

remains largely unexplored.

Looking ahead, future research should prior-
itize several directions. First, expanding upwind
GFDM to fractured porous media, considering the
dynamic behavior of fractures, to meet the practi-
cal needs of unconventional reservoir exploitation.
Second, optimizing GFDM's computational
parameters, including node distribution strategies
and influence domain selection criteria, to reduce
computational costs while maintaining solution
accuracy. Third, exploring the fusion of GFDM
with artificial intelligence technologies, such as
machine learning for node layout optimization
and deep learning for inverse problem solving, to
develop more intelligent and efficient numerical
simulation tools. Finally, conducting more engi-
neering verification studies, comparing GFDM
results with field test data, to enhance its reliability

and promote its industrial application.

In summary, upwind GFDM provides a
innovative and effective technical approach for
addressing the complex two-phase fluid-solid
coupling problems in porous media. This review
not only consolidates the current state of research
but also provides a roadmap for future develop-
ments, which will contribute to the advancement
of porous media flow simulation technology, the
optimization of oil and gas exploitation efficiency,
and the protection of the ecological environment.
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