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1 Introduction

Porous media are widely present in nature 
and engineering practices, such as underground 
oil reservoirs, soil, and rocks. The oil-water 
two-phase flow behavior in underground oil 
reservoirs directly affects the efficiency of oil and 
gas exploitation and the risk of environmental 
pollution. By studying the fluid-solid coupling 

problem of oil-water two-phase flow in porous 
media, scientific basis can be provided for the 
rational exploitation of underground oil reservoirs 
and environmental protection work such as the 
prevention of groundwater pollution.

Scholars have conducted research on the 
fluid-solid coupling problem in porous media and 
achieved a series of remarkable results in aspects 
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such as fluid-solid coupling theory, numerical 
solution technology, and engineering applications. 
Traditional mesh-based numerical solution 
methods face difficulties in efficiently generating 
high-quality meshes when dealing with static 
or dynamic fluid-solid coupling computational 
domains with complex boundary shapes. To 
overcome the limitations of mesh-based numerical 
solution methods, meshless numerical solution 
methods have developed rapidly in engineering 
calculations. This method only uses point clouds 
to discretize the computational domain, and 
the topological constraints for generating point 
clouds are much smaller than those for discrete 
meshes, thus enabling flexible discretization of the 
computational domain.

Despite the progress made in the field, there 
remain notable gaps in the application of GFDM, 
especially the upwind GFDM, to the two-phase 
fluid-solid coupling of porous media. Current 
research on meshless methods in porous media 
tends to focus more on geomechanics and solid 
mechanics, with relatively limited attention paid 
to reservoir seepage problems, and even less to 
scenarios involving two-phase flow. While efforts 
have been made to integrate upwind schemes with 
GFDM for addressing convection-dominated flow 
issues, there is still a lack of systematic analysis 
regarding how this integrated approach performs 
in the context of two-phase fluid-solid coupling.

Another key gap lies in the application of 
GFDM to fractured porous media—a critical 
area for the development of low-permeability 
and tight reservoirs—where research remains 
insufficient. Additionally, there is significant room 
for improvement in the computational efficiency 
of GFDM when applied to large-scale engineering 
models, particularly through the optimization 
of node layout and the refinement of influence 
domain selection. Moreover, the potential of com-

bining GFDM with emerging technologies like 
artificial intelligence to enhance its adaptability 
and accuracy in complex scenarios has not yet 
been fully explored, leaving a valuable avenue for 
future investigation.

Against this backdrop, this review aims to 
systematically synthesize the existing research 
progress on the application of upwind GFDM 
in the two-phase fluid-solid coupling of porous 
media. By providing a comprehensive overview 
of the current state of knowledge, identifying key 
challenges, and outlining promising directions for 
further study, this work seeks to lay a foundation 
for the development of general meshless numerical 
simulators for porous media flow, while also offer-
ing new insights to support the optimization of oil 
and gas exploitation strategies and environmental 
protection efforts.

2 Fluid-Solid Coupling Problems in 
Porous Media

Terzaghi [1] first considered the mechanism of 
fluid flow and medium deformation in deformable, 
saturated porous media, proposed the concept of 
effective stress, and established a one-dimensional 
consolidation model. Biot [2, 3] assumed that the 
material is isotropic and has linear elastic small 
deformation characteristics, the pore space of the 
material is saturated with incompressible fluid, 
and the fluid flow in the pore skeleton satisfies 
Darcy's law. On the basis of this assumption, a 
relatively complete three-dimensional consol-
idation theory was established. Subsequently, 
Biot extended this theory to the analysis of the 
coupling effect between fluid and pore pressure in 
anisotropic porous media [4] and dynamic analysis 
[5]. Since then, the development of porous media 
fluid-solid coupling theory has begun to consider 
the characteristics of different porous materials 
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and establish corresponding fluid-solid coupling 
mathematical models based on these characteris-
tics. Lubinski [6] and Geertsma [7] both discussed 
the Biot equation in the elastic theory of porous 
media. Zienkiewicz [8] proposed the generalized 
Biot theory considering geometric and material 
nonlinearity. Oda [9] used the fracture geometric 
tensor to express the relationship between rock 
mass seepage and deformation. Savage [10] applied 
Biot's three-dimensional consolidation theory to 
isotropic poroelastic media. Li et al. [11] considered 
the compressibility of solid and fluid phases, the 
capillary pressure between fluid phases, derived 
the fluid-solid coupling control equation on the 
assumption that fluid flow conforms to Darcy's 
law, and discussed the numerical solution method 
of the two-phase immiscible fluid-solid coupling 
model in detail. Li et al. [12-14] discussed the struc-
ture-mechanics interaction problem considering 
the consolidation effect of saturated soil and 
used the non-classical continuum finite element 
method for local strain analysis. Zhang et al. [15, 16] 
extended the generalized Biot formula established 
by Zienkiewicz et al. to the study of nonlinear 
problems of saturated soil consolidation.

With the development of the petroleum 
industry and the increasing demand for solving 
complex petroleum engineering problems, the 
research on fluid-solid coupling in porous media 
has attracted widespread attention in the fields of 
petroleum drilling, exploitation, and development. 
In the process of oil and gas exploitation, changes 
in pore fluid pressure will affect the physical 
properties of the rock matrix such as porosity and 
permeability, thereby affecting the migration of 
fluids in underground reservoirs. By simulating 
the interaction between pore fluid and rock 
skeleton, the productivity changes, seepage laws, 
pressure distribution, etc. of the reservoir can be 
predicted, providing a scientific basis for reservoir 

management and decision-making.

Lewis [17, 18] first considered disasters such as 
land subsidence caused by oil and gas exploitation, 
established an underground fluid-solid coupling 
model, and analyzed the influence of the coupling 
effect between pore fluid and rock mechanism 
on oil and gas production. Subsequently, the 
theoretical research on fluid-solid coupling in 
porous media incorporated the consideration of 
temperature field. Lewis, Wong, Settar et al. [19-

22] have done a lot of innovative work on the 
thermo-hydro-mechanical coupling theory and its 
engineering applications in reservoir engineering. 
Tortike, Ali et al. [23-25] considered the development 
mode of steam thermal recovery in heavy oil 
reservoirs and established a thermo-hydro-me-
chanical coupling mathematical model considering 
oil, gas, and water phases. Neaupane et al. [26] 
established a thermo-hydro-mechanical coupling 
model in fractured rock masses, used the finite 
element method for solution and analysis, and 
used the model to discuss wellbore stability. Bear 
[27] studied the correlation between regional stress, 
temperature, and changes in rock permeability 
during geothermal exploitation. Faquhar [28] found 
that stress changes can cause changes in rock 
elastic modulus and permeability, and there is a 
linear relationship between Young's modulus and 
permeability. Bouteca [29] found through experi-
ments that the volume coefficient of sandstone is a 
function of pore pressure and confining pressure. 
Fung [30] regarded geotechnical deformation as 
elastoplastic deformation, extended the two-di-
mensional isothermal seepage fluid-solid coupling 
model to a thermal recovery model, and solved it 
using the explicit alternating method. Sukirnan [31] 
considered the three phases of oil, gas, and water, 
and the elastoplastic characteristics of rocks, used 
the Mohr-Coulomb yield criterion to judge the 
failure situation, solved the fully coupled fluid-sol-
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id control equation using the finite element method 
and implicit iteration method, and used the results 
to simulate the surface subsidence phenomenon. 
Gutierrez [32] compared the results of conventional 
reservoir numerical simulation and fluid-solid 
coupled reservoir numerical simulation when pre-
dicting the temporal and spatial changes of fluid 
pressure, proving that the former cannot analyze 
the actual situation of reservoir compression only 
by using the rock compressibility coefficient.

In the 1980s and 1990s, domestic research 
institutions and scholars also began to apply the 
porous media fluid-solid coupling theory and 
model to solve practical problems in reservoir 
development and management. Ran et al. [33-35] 
established a mathematical model of multiphase 
fluid-solid coupling in underground reservoirs, 
which considers changes in parameters such as 
permeability and porosity, and uses the alternating 
iteration of finite difference and finite element 
for solution. The original model (uncoupled), 
elastic model, and plastic model were used for 
verification respectively, indicating that the 
coupling effect and the selection of constitutive 
model have a significant impact on the simulation 
results. Dong et al. [36-37] et al. considered factors 
such as elastoplastic deformation and creep, and 
established a mathematical model of fluid flow in 
variably saturated reservoirs. The model uses the 
finite element method to solve the unknowns of 
displacement and pore pressure, and the effective-
ness of the model is verified through a single well 
production example. Xue et al. [38-39] established a 
mathematical model of seepage and geomechanics 
coupling in immiscible saturated porous media, 
derived and solved the finite element calculation 
format of the model using the decoupling method, 
and studied the coupling effect between pore fluid 
and stress field in the near-wellbore region. Liu 
[40] established a fluid-solid coupling mathematical 

model for low-permeability reservoirs considering 
the threshold pressure gradient and gave the 
numerical solution. Xu [41] studied the fluid-solid 
coupling mechanism in loaded formations under 
a two-dimensional stress field and obtained 
the analytical solutions of pore pressure and 
medium stress under coupled conditions. Wang [42] 
established a thermo-hydro-mechanical coupling 
mathematical model using basic laws such as 
mass (energy) conservation and thermodynamics, 
and derived the corresponding finite element 
calculation format. Xiong [43] took permeability, 
porosity, and compressibility as functions of 
pressure and established a fluid-solid coupling 
mathematical model for multiphase fluid flow 
in deformable porous media. Fan et al. [44] used 
the finite difference method to provide a coupled 
solution for reservoir seepage and elastic defor-
mation of geotechnical interfaces, studied the time 
changes of strain, porosity, and permeability, and 
calculated the significant changes of parameters 
near the wellhead with time.

Frac tu re s  a r e  t he  ma in  s eepage  and 
production channels in low-permeability or tight 
reservoirs. In such unconventional reservoirs, the 
medium deformation effect will cause changes in 
fracture and matrix seepage parameters, which 
will have a great impact on production. Therefore, 
scholars  in the industry have establ ished 
various fluid-solid coupling mathematical models 
considering fracture dynamic behavior in real 
fractured reservoirs. Ji et al. [45] used the finite 
element method to solve the established fluid-solid 
coupling mathematical model of single-phase flow 
in dual media. Li et al., Xu et al. [46, 47] considered 
the nonlinear fluid-solid coupling seepage mech-
anism in which seepage parameters change with 
effective stress, established a fluid-solid coupling 
seepage model for deformable dual-porosity 
media, and gave the three-dimensional finite 
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element calculation format. Liu [48, 49] established 
an equivalent continuum model suitable for 
seepage in fractured sandstone reservoirs, derived 
the equivalent processing method of seepage field 
and geotechnical deformation field parameters 
considering the influence of fractures, and gave 
the coupled calculation method based on the finite 
difference method and finite element method.

It should be noted that as an innovative re-
search that first applies the meshless method to the 
field of reservoir numerical simulation, this paper 
only considers the two-phase fluid-solid coupling 
problem in general porous media, aiming to lay a 
sufficient theoretical foundation for the subsequent 
meshless method research considering fracture 
dynamic behavior in fractured porous media.

3 Mesh-Based Numerical Methods

So far, the main numerical solution methods 
for the fluid-solid coupling problem of oil-water 
two-phase flow in porous media include the Finite 
Difference Method (FDM) [50], Finite Element 
Method (FEM) [51], and Finite Volume Method 
(FVM) [52, 53].

A brief introduction to the three methods and 
their advantages and disadvantages is as follows:

(1) Finite Difference Method (FDM): The 
finite difference method approximates the differen-
tial equation at discrete grid points. Using methods 
such as Taylor series expansion, the derivatives 
of the differential equation are expressed by the 
difference quotients of the unknown function 
values at the grid nodes, thereby converting the 
differential equation into a system of algebraic 
equations, which can be solved numerically by 
iterative methods. The finite difference method is 
relatively easy to implement, but its accuracy is 
easily limited by grid density and step size, and it 

is necessary to select an appropriate grid size and 
step size to balance computational efficiency and 
accuracy; moreover, this method is not suitable for 
handling complex geometric shapes and boundary 
conditions, especially high-dimensional problems. 
In addition, when dealing with high-order 
differential equations and high-gradient problems, 
the finite difference method may require more 
complex techniques and larger computational 
load.

(2) Finite Element Method (FEM): The 
finite element method divides the computational 
domain into a finite number of interconnected 
but non-overlapping elements. Select appropriate 
nodes within each element as interpolation points 
to construct mathematical interpolation functions. 
The differential equation is expressed using the 
interpolation functions of variables. Then, the 
discrete format of the differential equation is ob-
tained through the weighted residual method and 
variation principle, thereby obtaining the algebraic 
equations on each element. Finally, the overall 
system of algebraic equations is established by in-
tegrating the relationships between elements, and 
the numerical solution can be obtained by solving 
this linear system of algebraic equations. The finite 
element method has better numerical stability and 
accuracy when dealing with high-dimensional 
problems and high-order differential equations, 
so it is widely used in numerical simulation and 
analysis in fields such as structural mechanics, 
heat conduction, and fluid mechanics. However, 
when dealing with complex geometric shapes and 
nonlinear problems, the computational load of the 
finite element method is usually large.

(3) Finite Volume Method (FVM): The finite 
volume method divides the computational domain 
into a finite number of volume elements. A set 
of discrete equations is obtained by integrating 
the conservation equation within each volume 
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element, where the unknowns are the values of 
the dependent variables at the grid nodes. Then, 
the overall system of equations is established by 
calculating the fluxes between adjacent volume 
elements, and the numerical solution is finally 
obtained by solving this system of equations. The 
finite volume method naturally associates physical 
quantities with control volumes, making it easier 
to understand and analyze physical processes; 
it is suitable for handling partial differential 
equations in conservative form and can accurately 
maintain conserved quantities. Therefore, the 
finite volume method is often used in numerical 
simulation and analysis of problems such as fluid 
dynamics and heat and mass transfer. However, 
the finite volume method may face computational 
challenges when dealing with nonlinear problems 
and highly non-uniform grids, that is, it requires 
more memory and computing resources, and the 
computational load is large.

It can be seen that the above methods all 
need to first divide the computational domain 
into a series of meshes. For example, the finite 
element method needs to divide elements, the 
finite difference method uses grids, and the finite 
volume method divides into volume elements. 
The nodes on the meshes in the computational 
domain are interconnected through the meshes 
themselves, forming the application basis of the 
above traditional mesh-based numerical solution 
methods. However, the mesh system may face 
some challenges and difficulties in the solution 
process of the porous media fluid-solid coupling 
numerical model [54-56]:

(1) Difficult mesh generation: Mesh-based 
methods require mesh generation, and due to the 
complex geometric shape of the porous media 
computational domain, generating suitable meshes 
is often very difficult and time-consuming.

(2) Mesh subdivision incompatibility: The 
flow and phase change properties in porous media 
may lead to mesh subdivision incompatibility. If 
the mesh is distorted during the flow process, the 
mesh quality will decrease, which will seriously 
affect the accuracy of the solution, reduce compu-
tational efficiency, and even lead to computational 
failure. In this case, mesh reconstruction or adap-
tive mesh adjustment is required, which will have 
a significant impact on computational accuracy 
and speed.

(3) Numerical dissipation: Mesh-based meth-
ods will introduce numerical dissipation during 
the calculation process, leading to a decrease in 
the accuracy of the numerical solution, and it is 
difficult to capture small-scale phenomena.

4 Meshless Numerical Solution Methods

Meshless methods adopt a node-based 
discretization method, avoiding the difficulties 
of mesh generation and subdivision faced by the 
above traditional mesh-based numerical methods:

(1) Meshless methods only use point clouds 
to discretize the computational domain, and the 
topological constraints for generating point clouds 
are much smaller than those for mesh discretiza-
tion. The point clouds in meshless methods can 
use simple data structures (such as arrays or linked 
lists) to store node position information. In con-
trast, traditional mesh-based numerical methods 
need to use two-dimensional or three-dimensional 
arrays to store the properties and state variables of 
mesh elements, which increases the complexity of 
the data structure.

(2) Meshless methods can adaptively move 
and adjust nodes in the porous media computa-
tional domain to adapt to the properties of flow 
and phase change, thereby avoiding the problem 
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of mesh subdivision incompatibility.

(3) Since meshless methods do not rely on 
meshes, there is no numerical dissipation effect 
caused by mesh size and shape, and the details 
of flow and phase change can be captured more 
accurately.

The research on meshless methods originated 
in the 1970s. Compared with the finite element 
method, which was the mainstream numerical 
solution method at that time, meshless methods 
had not attracted widespread attention from 
scholars, and the research progress was slow. 
Lucy [57] first proposed the Smoothed Particle 
Hydrodynamics (SPH) method and successfully 
introduced it to boundary-free astrophysics 
problems. This method uses discrete particles to 
describe fluids that are continuously distributed 
macroscopically but still particles microscopically, 
and is regarded as the first meshless method in the 
industry. However, its computational accuracy 
and stability are not satisfactory. Subsequently, 
Libersky et al. [58] extended the SPH method to the 
study of diaphragm impact problems, and Chen et 
al. [59] improved the SPH method by introducing a 
viscosity coefficient, which improved its stability. 
Since then, the research on meshless methods 
has almost stagnated. In the 1990s, Nayroles et 
al. [60] applied the Moving Least Square (MLS) 
method to the Galerkin method to form the Diffuse 
Element Method (DFM). This method only needs 
a series of discrete points and boundaries to 
describe the solution domain, initially possessing 
the characteristics of meshless methods. Sub-
sequently, Belyschko et al. [61] considered some 
terms in the shape function derivative expression 
that were ignored by Nayroles based on MLS, 
and used Lagrange multipliers to handle intrinsic 
boundary conditions, forming the Element-free 
Galerkin Method (EFGM). Compared with the 

SPH method, this method has a slightly higher 
computational cost but higher computational 
accuracy and stability. EFGM was later applied 
to dynamic crack propagation simulation [62, 63] 
and three-dimensional impact analysis [64], and 
achieved good simulation results. Since then, 
meshless methods have been widely used in 
various scientific and engineering problems [65-69].

At present, the research directions of mesh-
less methods are divided into boundary type and 
domain type according to whether the interpola-
tion basis function can satisfy the control equation. 
Among them, the boundary-type meshless method 
is similar to the boundary element method. On the 
basis of inheriting the advantage of the boundary 
element method in reducing the dimension of 
the problem to be solved, it only needs boundary 
collocation points to realize simulation calcula-
tion, and avoids the complex singular and nearly 
singular integral calculations in the boundary 
element method. At present, popular bounda-
ry-type meshless methods include the Boundary 
Knot Method (BKM) [70], Method of Fundamental 
Solutions (MFS) [71], Singular Boundary Method 
(SBM) [72, 73], Boundary Element-free Method 
(BEFM) [74], Regularized Meshless Method (RMM) 
[75], etc. The above methods have achieved varying 
degrees of success, but problems such as the easy 
generation of full-rank coefficient matrices and 
the dependence on the selection of interpolation 
basis functions (fundamental solutions) limit the 
application and development of such methods 
in practical engineering problems [76]. Different 
from boundary-type methods, localized domain 
methods introduce the concept of computational 
domain localization, that is, the entire compu-
tational domain can be divided into multiple 
subdomains, so that the linear system generated by 
discretizing the control equations will be a sparse 
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matrix. Therefore, a variety of different effective 
solution methods can be used to obtain numerical 
solutions accurately and quickly. Moreover, such 
methods do not depend on the selection of inter-
polation basis functions (fundamental solutions), 
so they can handle initial and boundary value 
problems of various partial differential equations 
and have broader application prospects. At present, 
commonly used localized domain methods mainly 
include the Element Free Galerkin Method (EFGM) 
[77], Diffuse Element Method (DEM) [78], Smoothed 
Particle Hydrodynamics (SPH) [79], and Generalized 
Finite Difference Method (GFDM) [80], etc.

In the field of geomechanics research, Zhou 
et al., Kou et al. [81-85] were the first to introduce 
EFGM into the research of fracture mechanics 
problems in geotechnical engineering, and 
predicted arch dam cracking and groundwater flow 
through EFGM simulation. Ge et al. [86] introduced 
EFGM into seepage calculation with free surfaces. 
Zhang and Pang [87, 88] used EFGM to calculate the 
bending problem of foundation slabs. Wang et al. 
[89, 90] regarded soil as an ideal medium and used 
EFGM to solve the consolidation equation. Zhang 
[91] first gave the error analysis of the discrete 
equation of consolidation EFGM, indicating that 
the refinement degree of the mesh integration 
structure has a great influence on computational 
accuracy and stability. Pang [92-94] used EFGM to 
simulate slope excavation in geotechnical engi-
neering, contact (friction) between two objects, 
and discontinuous surfaces.

In the field of solid mechanics research, 
Yang [95] constructed an incremental FEM-EFGM 
coupled solution technology using surface force 
coupling technology, which can solve general 
solid mechanics problems. He et al. [96-98] applied 
the FEM-EFGM coupled solution technology 
to the analysis of dynamic crack propagation 

problems. Liu et al. [99] established the calculation 
formula of the FEM-EFGM method, and verified 
the feasibility of introducing essential boundary 
conditions through Lagrange multipliers through 
examples. Wang et al. [100-102] used EFGM to 
simulate crack propagation and plate bending. 
Zhang et al. [103-106] established frameworks based 
on the compactly supported weighted residual 
meshless method and the least square collocation 
meshless method respectively, and the latter has 
considerable computational accuracy, efficiency, 
and stability. Cai et al. [107-109] proposed a meshless 
natural element method for solving plane prob-
lems of elasticity based on the natural neighbor 
approximation displacement function and applied 
it to underground engineering problems. Lu et al. 
[110, 111] realized the solution error estimation of the 
natural element method based on the Z-Z method. 
Dai [112] derived an algorithm for three-dimensional 
natural neighbor coordinates and their derivatives 
based on the Lasserre convex polyhedron volume 
formula, and gave the flow chart of the three-di-
mensional natural element method algorithm. 
Luan, Tian et al. [113-116] combined the element-free 
method with the manifold method based on 
finite cover to form the finite cover element-free 
method, which was used to analyze the fracture 
characteristics and crack propagation of complex 
rock masses.

In the field of fluid mechanics research, Qiu 
et al. [117] used EFGM to numerically simulate the 
two-dimensional incompressible viscous flow 
around a cylinder. Fang et al. [118] used the SPH 
method to simulate liquid sloshing with a free 
liquid surface in a liquid storage container. Wang 
et al. [119] developed a set of meshless algorithms 
for solving unsteady flows. This method automat-
ically generates point clouds by filling and placing 
points according to regions, and the comparison 
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between the calculation results and experimental 
measurement results verifies the effectiveness and 
practicality of the method.

For underground seepage problems, Zeng et 
al. [120, 121] discussed single-phase seepage problems 
using EFGM. Huang and Shu [122, 123] applied 
EFGM and the Moving Least Squares (MLS) 
meshless method to the solution of reservoir seep-
age problems and derived the meshless discrete 
format for oil-water two-phase seepage problems. 
Li [124] first introduced the meshless method into 
numerical well testing, and used the Minimum 
Weighted Least  Squares (MWLS) method 
combined with EFGM to solve the well test inter-
pretation model considering complex boundaries, 
heterogeneity, and oil-water two-phase fault-block 
reservoirs, achieving good results in computational 
accuracy and efficiency. Rao et al. [125] used the 
MLS method combined with the MWLS method 
to study the water-gas flow problem in dual-media 
shale gas reservoir models. The reservoir example 
with complex boundary shapes verified the 
high accuracy, stability, and convergence of the 
proposed method, revealing the great application 
potential of the meshless method in reservoir 
seepage problems.

Combined with the above research status of 
meshless methods, it can be seen that as a new 
type of numerical calculation method, the research 
of meshless methods is mainly concentrated in the 
fields of geomechanics and solid mechanics. As a 
typical porous medium, the application research of 
meshless methods on the seepage mechanism of 
underground reservoirs is slow and the results are 
few. The complexity, nonlinearity, and multi-scale 
characteristics of underground reservoir seepage 
problems limit the application of traditional nu-
merical methods. However, the mesh-independent 
characteristics of meshless methods will provide 
new possibilities for more flexible, accurate, and 

convenient seepage prediction. Therefore, promot-
ing the application research of meshless methods 
in porous media seepage problems may provide 
important references for in-depth understanding 
of porous media seepage mechanisms, optimizing 
energy development strategies, and improving 
energy exploitation efficiency.

5 the Generalized Finite Difference 
Method

GFDM is one of the most promising methods 
among meshless methods [126, 127]. Developed from 
the classical finite difference method, GFDM 
expresses the partial derivatives of various orders 
of unknown quantities in the control equation as 
a linear combination of the function values of 
adjacent nodes in the subdomain based on the 
multivariate function Taylor series expansion and 
weighted least square fitting in the subdomain, 
overcoming the dependence of traditional FDM 
on meshes. GFDM can handle problems with 
discontinuities, singular points, and high-order 
derivatives. In addition, the consistency in 
principle between GFDM and FDM provides 
convenience for them to use similar nonlinear 
solution strategies (such as the Newton iteration 
method). That is, in practical applications, there 
is no need to write a dedicated NR solver for 
GFDM, which obviously reduces the technical 
difficulty of forming a general meshless numerical 
simulator for porous media multiphase flow based 
on GFDM.

At present, GFDM is developing rapidly 
and is widely used in solving various scientific 
and engineering problems, including shallow 
water equations [128], high-order partial differential 
equations [129], transient heat conduction analysis 
[130], stress analysis [131], water wave interaction 
[132], inverse heat source problems [133], seismic 
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wave propagation problems [134], coupled thermo-
elasticity problems [135-137], stochastic analysis of 
groundwater flow [138], and some typical differen-
tial equation problems (such as unsteady Burgers' 
equations [139, 140], nonlinear convection-diffusion 
equations [141], time-fractional diffusion equations 
[142]). The generalized finite difference method only 
needs to arrange a set of nodes in the computa-
tional domain to achieve accurate solution of the 
control equation, saving the time-consuming and 
laborious mesh division and numerical integration 
of the complex geometric features of the computa-
tional domain in the finite element method, finite 
difference method, and boundary element method. 
It is an efficient and high-precision numerical 
modeling method.

For flow problems, when dealing with certain 
physical parameters in the control equation, it 
is often necessary to adopt an upwind scheme. 
In meshless methods, the upwind scheme is 
generally realized by modifying the influence 
domain of nodes, including the upwind influence 
domain method that moves the central node to the 
upstream direction [143] and the partial influence 
domain method that includes more upstream nodes 
in the influence domain of the central node [144]. 
However, due to the possible complexity of the 
actual flow field, it is difficult to form a stable 
upwind effect by modifying the node influence 
domain, and the computational accuracy is also 
difficult to be well guaranteed. Sridar and Balakr-
ishnan [145] proposed a finite difference method for 
computational fluid dynamics based on the upwind 
least square method. Saucedo-Zendejo et al. [146] 
used the upwind GFDM to solve the three-dimen-
sional free surface flow in the mold filling process. 
Michel et al. [147] applied the upwind GFDM to 
simulate the solution mining process at the micro 
and macro scales. Shao et al. [148] used the upwind 
GFDM to solve the Stokes interface problem.

Immiscible two-phase flow is a basic case of 
porous media flow problems, such as oil-water 
two-phase flow in underground reservoirs [149-

151].  The relative phase permeability in the 
porous media two-phase flow equation is a 
typical physical parameter that needs to adopt 
the upwind scheme. Rao et al. [152] applied the 
upwind GFDM to the modeling of single-phase 
heat and mass transfer in porous media, adopted 
a sequential coupled format, and proposed a 
high-precision convection-diffusion equation 
solution method based on the upwind GFDM, 
which also means the great application potential 
of the upwind GFDM in porous media seepage 
problems. Subsequently, Rao et al. [153, 154] applied 
the generalized finite difference method (GFDM) 
based on the fully implicit scheme to oil-water 
two-phase flow. To enable GFDM to handle 
singular source-sink terms, Rao et al. [155] further 
developed an integral-form extended finite volume 
method (EFVM) based on GFDM. This method 
can maintain local mass conservation in the sense 
of least squares and directly invoke the nonlinear 
solvers for various seepage models embedded in 
existing simulators. Currently, the extended finite 
volume method has been successfully applied to 
black-oil models and compositional models [156, 

157]. In addition, Rao et al. [158] extended EFVM to 
fractured hydrocarbon reservoirs and developed a 
meshless discrete fracture model.

6 Conclusion

This review systematically examines the ap-
plication of upwind Generalized Finite Difference 
Method (GFDM) in the two-phase fluid-solid 
coupling of porous media, synthesizing the 
evolution of relevant theories, numerical methods, 
and current research progress, while identifying 
key research gaps and future directions. The main 
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conclusions are as follows:

First, the development of porous media 
fluid-solid coupling theory has progressed 
from basic consolidation models to complex 
multi-physics coupling frameworks. Starting with 
Terzaghi's one-dimensional consolidation model 
and Biot's three-dimensional consolidation theory, 
subsequent studies have integrated nonlinearity, 
anisotropy, thermal effects, and elastoplastic 
deformation, providing a solid theoretical basis 
for understanding the interaction between fluid 
flow and medium deformation in porous media. 
However, the practical application of these 
theories still relies heavily on efficient numerical 
methods, especially in addressing the complexity 
of underground reservoir scenarios.

Second, traditional mesh-based numerical 
methods (FDM, FEM, FVM) have played 
important roles in solving porous media fluid-solid 
coupling problems but are constrained by inherent 
limitations. Difficulties in mesh generation for 
complex domains, poor adaptability to dynamic 
flow and phase change processes, and the presence 
of numerical dissipation limit their performance 
in complex engineering applications. Meshless 
methods, by contrast, have emerged as a powerful 
alternative, with GFDM standing out due to its 
meshless nature, consistency with traditional 
FDM (facilitating the use of mature nonlinear 
solvers), and ability to handle discontinuities and 
high-order derivatives. The integration of upwind 
schemes with GFDM further enhances its stability 
and accuracy in solving convection-dominated 
flow problems, addressing a key shortcoming of 
traditional meshless methods in achieving reliable 
upwind effects.

Third, despite the promising potential of up-
wind GFDM, several critical research gaps persist. 
The application of GFDM in porous media has 
been primarily limited to single-phase seepage and 

general geomechanics, with insufficient focus on 
two-phase fluid-solid coupling—especially in frac-
tured porous media, which are crucial for low-per-
meability oil and gas reservoirs. Additionally, 
the computational efficiency of GFDM for large-
scale engineering models needs improvement, 
with opportunities for optimization in node layout 
and influence domain selection. Furthermore, the 
integration of GFDM with emerging technologies 
such as artificial intelligence to enable intelligent 
parameter optimization and adaptive simulation 
remains largely unexplored.

Looking ahead, future research should prior-
itize several directions. First, expanding upwind 
GFDM to fractured porous media, considering the 
dynamic behavior of fractures, to meet the practi-
cal needs of unconventional reservoir exploitation. 
Second, optimizing GFDM's computational 
parameters, including node distribution strategies 
and influence domain selection criteria, to reduce 
computational costs while maintaining solution 
accuracy. Third, exploring the fusion of GFDM 
with artificial intelligence technologies, such as 
machine learning for node layout optimization 
and deep learning for inverse problem solving, to 
develop more intelligent and efficient numerical 
simulation tools. Finally, conducting more engi-
neering verification studies, comparing GFDM 
results with field test data, to enhance its reliability 
and promote its industrial application.

In summary, upwind GFDM provides a 
innovative and effective technical approach for 
addressing the complex two-phase fluid-solid 
coupling problems in porous media. This review 
not only consolidates the current state of research 
but also provides a roadmap for future develop-
ments, which will contribute to the advancement 
of porous media flow simulation technology, the 
optimization of oil and gas exploitation efficiency, 
and the protection of the ecological environment.
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