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Abstract:  Carbon dioxide enhanced oil recovery with geological storage has attracted increasing atten-
tion because it can simultaneously improve hydrocarbon recovery and reduce emissions. Accurate and 
efficient prediction of development performance, together with reliable support for injection–production 
design and optimization, has therefore become a central scientific and engineering challenge. Numerical 
simulation for carbon dioxide flooding has evolved from improved black-oil and pseudo-compositional 
formulations to K-value approaches and, more recently, equation-of-state-based compositional models. 
Although compositional simulation offers high mechanistic fidelity, it suffers from severe computational 
burdens in high-resolution three-dimensional models and in iterative workflows for history matching 
and optimization. To alleviate these constraints, three complementary acceleration routes have been de-
veloped, including multiscale methods that embed fine-scale heterogeneity into coarse-scale solutions, 
streamline-based methods that leverage convection-dominated flow characteristics, and reduced-order 
models that compress the state space for rapid iterative evaluation. In parallel, data-driven surrogate 
models have progressed rapidly with the growing availability of production, monitoring, and simulation 
data. These approaches enable fast forecasting, sensitivity analysis, and multi-objective decision sup-
port, yet their reliability remains limited under complex phase behavior and out-of-distribution operat-
ing conditions. Recent data–physics coupling paradigms, represented by simplified mechanistic models, 
network-based flow models, and physics-constrained deep-learning frameworks, provide promising 
pathways to reconcile physical consistency with computational efficiency. This review synthesizes the 
evolution, applicability boundaries, and engineering performance of these methods, and highlights fu-
ture directions toward trustworthy, field-oriented intelligent simulation and closed-loop optimization in 
highly heterogeneous reservoirs.
Keywords:  CCUS-EOR; Numerical simulation; Reduced-order models; Deep learning; Data–physics 
coupling; Physics-informed neural networks
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1 Introduction

In the evolution of enhanced oil recovery 
(EOR) technologies, CCUS-EOR has attracted 
extensive attention because it can simultane-
ously increase oil recovery and contribute to 
carbon-emission reduction. Accurately predicting 
the development performance of CCUS-EOR 
and providing reliable support for the rational 
design of field injection–production schemes have 
become central scientific and engineering issues in 
integrated CO₂-EOR and storage research [1]. Since 
the 1970s, numerical simulation methods, owing 
to their strong capability in mechanism-based 
description and broad adaptability, have gradually 
become the most important technical approach in 
both CCUS-EOR research and practice [2]. Focus-
ing on the phase behavior and multicomponent 
mass-transfer characteristics of CCUS-EOR, 
three major numerical simulation frameworks 
have been established: the improved black-

oil (pseudo-compositional) model, the K-value 
model, and the equation-of-state (EOS)-based 
compositional model. These approaches differ in 
physical fidelity, computational complexity, and 
scope of application, and each has played a critical 
role at different stages of development[3].

In early studies, the pseudo-compositional 
model introduced the concept of a “solvent” into 
the traditional black-oil framework, enabling an 
engineering-level approximation of CCUS-EOR 
with relatively high computational efficiency [4]. 
However, its pseudo-component configuration is 
largely experience-dependent, making it difficult 
to faithfully represent CO₂ dissolution, extraction, 
and swelling effects under high-pressure and 
high-temperature conditions. Its capability to 
describe the continuous evolution of phase 
behavior under miscible and immiscible condi-
tions is also limited. The K-value model, which 
employs empirical or semi-empirical gas–liquid 
equilibrium constant formulations, can capture 

Fig. 1  Basins for which the potential for incremental oil production and CO2 storage have been assessed [5]. 
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limited dissolution and mass-transfer processes 
under immiscible conditions and thus offers strong 
engineering adaptability. Yet, once the pressure 
exceeds the minimum miscibility pressure, the 
coupled effects of complex multicomponent mass 
transfer and phase behavior cause the accuracy of 
empirical K-value approximations to deteriorate 
significantly. To overcome these limitations, 
EOS-based compositional models have grad-
ually become the mainstream for CCUS-EOR 
simulation, as they can more comprehensively 
characterize the phase behavior of the CO₂–crude 
oil system and the key associated effects such as 
viscosity reduction and interfacial tension lower-
ing. Nevertheless, in large-scale three-dimensional 
high-resolution geological models, EOS iterations 
and strongly coupled solutions lead to substantial 
computational overhead. As a result, the runtime 
of a single simulation increases markedly, while 
the cost of history matching and optimization in 
outer-loop workflows can escalate almost expo-
nentially, thereby constraining their application in 
rapid prediction and engineering decision-making.

To address the practical bottlenecks faced 
by compositional models, researchers have 
proposed various acceleration strategies without 
altering the underlying conservation laws and 
governing physical equations. These efforts can 
be broadly categorized into three logically distinct 
yet complementary technical routes: multiscale 
methods from the perspective of spatial discre-
tization, streamline-based methods grounded in 
flow-dynamics characteristics, and reduced-order 
methods centered on state-space rank reduction. 
Each route offers unique advantages in preserving 
dominant heterogeneity effects, improving com-
putational efficiency for convection-dominated 
systems, and enabling fast iterations for history 
matching and optimization, thereby providing an 
important foundation for “physically controllable 

acceleration” in integrated evaluation of CCUS-
EOR and storage.

Meanwhile,  with the accumulation of 
production and monitoring data and the rapid 
advancement of computational intelligence, purely 
data-driven machine learning and deep learning 
surrogate models have increasingly emerged as a 
major research direction for CCUS-EOR simula-
tion and optimization. By learning the input–out-
put mapping, these methods significantly reduce 
dependence on geological modeling and numerical 
discretization and deliver clear advantages in 
predictive efficiency. However, under complex 
phase-behavior conditions and when extrapolating 
to unseen operating scenarios, their reliability 
may be insufficient due to the lack of physical 
constraints. To balance “physical-mechanism 
fidelity” and “data-driven efficiency,” recently 
developed data–physics coupled paradigms—such 
as simplified-mechanism-based CRM/INSIM, 
networked/graph-structured surrogates, and 
physics-constrained deep models—have provided 
a more unified and engineering-promising frame-
work and new pathways for efficient prediction, 
connectivity identification, and closed-loop 
optimization in integrated CO₂-EOR and storage.

Building on the above background, this 
paper addresses the key demands of integrated 
prediction and optimization for CO₂-EOR and 
storage. We systematically review the evolution 
and applicability boundaries of three major numer-
ical simulation frameworks, summarize the core 
concepts and field performance of physics-based 
acceleration approaches including multiscale, 
streamline, and reduced-order methods, and 
examine the latest advances in machine learning/
deep learning surrogates for joint CO₂-EOR 
and storage prediction, history matching, and 
multi-objective optimization. Particular emphasis 
is placed on data–physics coupled approaches, 
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with a focused discussion of their advantages 
and remaining challenges in enhancing model 
reliability, generalizability, and interpretability. 
Through comparative analyses of these technical 
pathways, this paper aims to provide a reusable 
technical roadmap and informed perspectives on 
future research directions for rapid evaluation 
and decision support of integrated CO₂-EOR and 
storage in complex heterogeneous reservoirs.

2 Computational Bottlenecks in CCUS-
EOR Simulation and Dimension-
Reduction Acceleration Pathways

2.1	Computational Bottlenecks in CCUS-EOR 
Simulation

In the evolution of enhanced oil recovery 
(EOR) technologies, CCUS-EOR has attracted 
extensive attention because it can achieve the 
dual objectives of improving oil recovery and 
reducing carbon emissions. Accurately predicting 
the development performance of CCUS-EOR, 
and thereby supporting the rational design of field 
injection–production schemes, remains a core 
research problem in this domain. Since the 1970s, 
numerical simulation methods—owing to their 
strong mechanism-based description capability 
and broad adaptability—have gradually become 
the primary technical tool in CCUS-EOR research 
and practice [6]. Over decades of development, 
three major numerical simulation frameworks 
have been established for CCUS-EOR: the 
improved black-oil (pseudo-compositional) model, 
the K-value model, and the fully compositional 
model. These approaches differ in physical fidel-
ity, computational complexity, and application 
scope, and each has played an important role at 
different stages of technological evolution.

Early numerical simulations were largely 
built upon the conventional black-oil framework, 

which cannot directly represent the complex 
phase behavior between CO₂ and crude oil. 
In 1972, Todd and Longstaff proposed an 
improved black-oil model (also referred to as a 
pseudo-compositional model) [7]. The basic idea is 
to introduce “solvent” as a new pseudo-component 
into the traditional three-phase black-oil model, 
so that oil, water, dissolved gas, and injected gas 
are treated as four components, with separate mass 
conservation equations formulated and solved for 
each. In 2020, Sandve [8] proposed an extended 
black-oil model in which black-oil properties 
such as density and viscosity within each grid cell 
dynamically vary with the CO₂ fraction; black-oil 
functions are calibrated against experimental data, 
enabling predictions that are closer to those of 
fully compositional simulations [9]. This approach 
retains the advantages of the black-oil model, 
including high computational efficiency and a 
relatively simple structure. However, the definition 
of pseudo-components is still largely dependent 
on empirical approximations, making it difficult to 
faithfully capture CO₂-induced dissolution, extrac-
tion, and swelling effects under high-pressure and 
high-temperature conditions. Moreover, the model 
does not fully describe the continuous evolution 
of phase behavior across miscible and immiscible 
regimes, which can lead to substantial deviations 
when predicting displacement performance in 
complex reservoir settings.

As research progressed, scholars recognized 
that relying solely on pseudo-component approx-
imations was no longer sufficient to accurately 
represent the complex phase behavior during dis-
placement. Consequently, the K-value model was 
proposed and widely applied [10]. This approach 
determines gas–liquid equilibrium constants 
using empirical correlations or semi-empirical 
formulations, thereby describing the partitioning 
of multiple components between two phases. 
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Under immiscible conditions, the K-value model 
can reasonably capture the limited dissolution 
and mass-transfer processes between CO₂ and 
hydrocarbons. As a result, it was extensively used 
in the 1980s and 1990s to simulate immiscible 
CCUS-EOR [11][12]. Its key advantages include 
relatively low computational cost, ease of imple-
mentation, and strong engineering adaptability 
through integration with the traditional black-oil 
framework [13]. However, the applicability of the 
K-value model under miscible flooding conditions 
is clearly limited. When reservoir pressure 
exceeds the minimum miscibility pressure (MMP), 
complex multicomponent mass transfer and 
phase evolution occur between the oil and gas 
phases, which cannot be adequately reproduced 
by K-value approximations based purely on 
empirical expressions, resulting in a substantial 
loss of simulation accuracy. Therefore, although 
the K-value approach has played an important role 
in immiscible-flooding simulations, its accuracy 
bottleneck has gradually driven researchers toward 
fully compositional modeling.

To address the limitations of the aforemen-
tioned models, fully compositional models have 
increasingly become the mainstream approach 
for CCUS-EOR simulation. The EOS-based 
compositional model proposed by Coats in 1980 
[14] established the theoretical foundation for 
subsequent commercial reservoir simulators such 
as ECLIPSE Compositional and CMG-GEM. 
These methods rely on equations of state (EOS), 
including the Peng–Robinson and Soave–Redlich–
Kwong equations, to perform phase-behavior 
calculations for each component, enabling accu-
rate determination of vapor–liquid equilibrium 
constants and simulation of the dynamic evolution 
of multicomponent phase behavior. The primary 
advantage of fully compositional models lies 
in their ability to comprehensively capture the 

complex interactions between CO₂ and crude 
oil [15], including dissolution, extraction, and 
swelling mechanisms, as well as the associated 
effects such as viscosity reduction and interfacial 
tension lowering [16][17][18]. Nevertheless, these 
models also present non-negligible limitations. 
First, their computational cost is high: in large-
scale three-dimensional geological models, EOS 
iterations must be performed for every grid cell, 
and a single simulation often requires hours or 
even days. Second, during history matching, 
hundreds to thousands of simulation runs may be 
needed, causing the overall computational burden 
to increase dramatically and severely constraining 
their use in rapid prediction and optimization 
workflows [19]. In addition, constructing high-res-
olution 3D models itself requires substantial 
manpower and multi-source data, making the 
overall cost extremely high. More importantly, 
the large number of model degrees of freedom 
leads to pronounced non-uniqueness in parameter 
inversion, further increasing the uncertainty of 
predictive outcomes.

2.2	Progress in Dimension-Reduction Methods 
for CCUS-EOR

To address the practical bottlenecks of fully 
compositional models—particularly the heavy 
computational burden and the high iterative cost of 
history matching in high-resolution 3D geological 
models—researchers worldwide have proposed 
a series of acceleration strategies with clear 
engineering value, without altering the funda-
mental conservation laws and governing physical 
equations. In general, these strategies follow three 
logically distinct yet complementary technical 
routes: (i) multiscale methods from the perspective 
of spatial discretization; (ii) streamline-based 
methods leveraging flow-dynamics characteristics; 
and (iii) reduced-order methods centered on state-
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space rank reduction.

2.2.1 Multiscale methods
The core idea of multiscale methods is to con-

struct multiscale basis functions that can “carry” 
fine-scale heterogeneity information onto coarse-
grid scales. In doing so, the global solution of the 
pressure–velocity field is shifted to the large scale, 
while the influence of fine-scale geological textures 
is embedded into the coarse-scale solution through 
basis-function corrections. This philosophy differs 
from simple homogenization/equivalent-parameter 
upscaling and also from blind coarsening. By 
using numerical operators to incorporate fine-scale 
information into the global solution in a structured 
manner, multiscale methods can significantly 
reduce the degrees of freedom and solution cost 
while preserving dominant heterogeneity effects. 
Representative approaches include the multiscale 
finite element method proposed by Hou and Wu, 
which constructs basis functions by solving local 
elliptic subproblems and demonstrates numerical 
stability and convergence [20]. The multiscale 
finite volume method developed by Jenny, Lee, 
and Tchelepi, by contrast, aligns more closely 
with industrial reservoir simulators in terms of 
control-volume partitioning and flux-conservation 

implementation [21].

Compared with conventional coarse-grid 
upscaling, a key advantage of multiscale methods 
is that they do not simply average fine-scale 
parameters. Instead, fine-scale impacts participate 
in the global solution through “correction–
restriction” operators. As a result, these methods 
can still maintain reliable descriptions of pressure 
propagation and velocity distribution in settings 
characterized by strong interlayer contrasts 
and permeability spanning several orders of 
magnitude, especially near-well regions. In 2018, 
Torres et al.[23] constructed a cross-scale model 
in the Bakken tight oil reservoir to elucidate the 
interplay between CO₂-enhanced oil recovery and 
storage mechanisms. In 2024, Li et al. [24] devel-
oped a multiscale framework for oil–water and 
gas-flooding simulations, quantitatively analyzing 
the impact of multiscale heterogeneity on displace-
ment efficiency. In 2025, Peng et al. [25] employed 
coupled pore-network and reservoir-scale 
multiscale simulation to reveal the mechanisms of 
CO₂ foam flooding in low-permeability reservoirs.

For  CCUS-EOR scenar ios  invo lv ing 
strong phase-behavior coupling, pronounced 
capillary-pressure effects, or non-Darcy flow, 

Fig. 2  Primal and dual coarse grids generated for a 40 x 30 x 31 realization of the single-fault model. The plot in (a) 
shows the ‘inner’ cells (blue), the ‘face’ cells (white), the ‘edge’ cells (red), and the primal coarse grid (thick line) for a 
subset of the whole model. Plot (b) shows the different blocks in the primal 4 x 3 x 3 coarse grid colored in different trans-
parent colors to show the edge’ cells inside, colored in blue. Plot (c) shows a side-view of the same plot, in which the ‘edge’ 
cells have been given a different color for each primal block [22].
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retaining a traditional “pressure–saturation se-
quential” coupling framework may still introduce 
non-negligible errors in approximating phase be-
havior and mass-transfer terms within multiscale 
formulations. Therefore, in engineering practice, 
multiscale solvers are often combined with 
adaptive mesh refinement, local near-well fine 
grids, or hybrid grids (e.g., unstructured or nested 
meshes) [26]. This strategy maintains high fidelity 
in critical regions while allowing coarsening in 
less sensitive areas, achieving a practical balance 
between accuracy and efficiency. From the stand-
point of time discretization, multiscale methods 
are also frequently paired with implicit-pressure/
explicit-saturation schemes or fully implicit 
solvers to stably handle high compressibility and 
strongly coupled source terms. Across multiple 
comparative studies, such combined strategies 
can often deliver one to two orders of magnitude 
speedup relative to “full fine-grid—fully implicit” 
baselines, while keeping the influence on full-
field pressure distribution and macroscopic sweep 
within acceptable engineering limits.

2.2.2 Streamline methods
Streamline methods are built on instantaneous 

velocity fields and transform 3D, convection-dom-
inated multiphase flow problems into 1D transport 
problems along streamlines in a Lagrangian 
coordinate system. This mapping decomposes a 
high-dimensional convection–diffusion problem 
into a series of 1D transport equations that can be 
solved in parallel, markedly reducing numerical 
dissipation and dispersion during time marching. 
Thiele et al. [27] proposed a streamline-based 
history-matching strategy that adjusts parameters 
such as interwell connectivity and relative 
permeability, enabling simulated production 
to approach observed data under constraints 
of “streamline time of flight” and “volumetric 

allocation,” thus achieving multi-well history 
matching with reduced full-field reassembly cost. 
Datta-Gupta and King [28] provided a systematic 
exposition of streamline theory and engineering 
implementation, highlighting that in waterflooding 
and gas-flooding problems with clear injection–
production relationships and dominant macro-
scopic convection, streamline simulation offers 
clear advantages over full-field finite-difference or 
finite-volume methods in computational efficiency 
and parameter-sensitivity analysis[29].

In CCUS-EOR applications, the advan-
tages of streamline methods can be particularly 
pronounced. In 2022, Islam and Woobaidullah 
performed integrated CO₂ storage and EOR 
assessments by combining streamline analysis 
with compositional simulation [30]. In 2025, 
Zhang et al. [31] proposed a three-phase streamline 
history-matching method that significantly im-
proved field-data matching efficiency. Streamline 
approaches typically produce lower numerical 
dispersion when describing displacement fronts, 
viscous fingering, and gravity override—phenom-
ena characterized by “strong convection—weak 
diffusion.” This makes them well suited for rapid 
screening of multiple development scenarios, 
sensitivity analyses of injection–production 
strategies, and Monte Carlo evaluations across 
multiple geological realizations.

However, when phase behavior and source 
terms (e.g., viscosity and density variations 
induced by dissolution and extraction) are strongly 
coupled, the instantaneous velocity field and 
phase-state parameters require more frequent 
iterative updates, which can partially offset the 
computational advantages of streamline methods. 
To mitigate this issue, engineering practice often 
introduces relaxed iterations between pressure up-
dates and streamline reconstruction, and increases 
the reconstruction frequency during critical time 
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periods to achieve a controlled trade-off between 
accuracy and efficiency[32].

2.2.3 Reduced-order methods
Reduced-order models (ROMs) focus on 

state-space compression. Methods such as princi-
pal component analysis and singular value decom-
position are used to construct low-dimensional 
subspaces from “training snapshots.” The original 
high-dimensional state is then projected onto this 
subspace for evolution, and physical fields are 
recovered through reconstruction mappings [33]. 
Chen and Durlofsky systematically discussed the 
construction, stability, and error sources of sub-
surface-flow ROMs, proposing techniques such as 
selective snapshot selection, blockwise reduction, 
and adaptive updating to alleviate “out-of-sample 
drift,” thereby maintaining engineering usability 
under complex heterogeneity [34]. The linearized 
ROM proposed by Cardoso and Durlofsky adopts 
a methodological structure of “linear approxi-
mation—projected evolution—error correction,” 
enabling effective dimensionality reduction for 
coupled pressure–saturation systems, and thus 
demonstrating clear computational advantages 
in parameter-sensitivity analyses and repeated 
simulation scenarios [35].

Compared with multiscale and streamline 
methods, ROM places greater emphasis on 
dimensionality reduction at the operator level. 
Theoretically, this enables ROM to interface with 
solvers using arbitrary grid structures and bound-
ary conditions. From an engineering standpoint, 
ROM can be embedded as a “fast prediction 
kernel” into the outer loops of history matching 
and optimization, thereby substantially shortening 
the wall-clock time of the iterative “simulate–
evaluate–re-simulate” cycle. It should be noted, 
however, that the effectiveness of ROM is highly 
dependent on the representativeness of training 

samples and the availability of robust online 
calibration mechanisms. When the displacement 
process involves phase-regime switching, strong 
nonlinear transitions, or significant changes in well 
patterns and control parameters, a static subspace 
may fail to cover the true evolution trajectory. In 
such cases, model accuracy must be maintained 
through incremental snapshots, local-subspace 
stitching, or error-aware retraining strategies [36].

In the context of CCUS-EOR, ROM is often 
combined in practice with tabulated treatments 
of EOS-based compositional calculations and 
surrogate approximations of key phase-behavior 
parameters. This hybrid strategy reduces the per-
step cost of phase-equilibrium iterations without 
sacrificing critical phase-transition windows, 
leading to a notable reduction in overall runtime. 
In 2022, Zhao et al. [37] explored the feasibility 
of CCUS-EOR in low-pressure reservoirs by 
integrating EOS simulations with surrogate 
approximations. In 2025, Ma et al. compared 
multiple ROM approaches and systematically 
evaluated their predictive accuracy in CO₂ 
enhanced oil recovery (CO₂-EOR) scenarios [38].

3 Progress in Data-Driven Methods for 
CCUS-EOR

3.1	Progress in Machine-Learning-Based  
Approaches for CCUS-EOR

With the continuous accumulat ion of 
reservoir production-dynamics data and the rapid 
development of computational intelligence, 
purely data-driven approaches based on machine 
learning and deep learning have increasingly 
become an important research direction for 
numerical simulation and optimization of CCUS-
EOR. Unlike traditional physics-based modeling 
methods, purely data-driven approaches typically 
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do not rely on explicit governing equations. 
Instead, they learn input–output mappings directly 
from large-scale historical data. Such methods can 
substantially reduce dependence on geological 
modeling and numerical discretization, and offer 
clear advantages in predictive efficiency [39].

As one of the earliest classes of tools 
introduced into CCUS-EOR prediction and optimi-
zation, traditional machine-learning methods have 
played a significant role. These methods include 
support vector machines (Support Vector Machine, 
SVM), random forests (Random Forest, RF), 
and gradient-boosting models (Extreme Gradient 
Boosting, XGBoost). Owing to their relatively 
simple structures, stronger interpretability, and ef-
ficient training, they have been explored in various 
CO₂-EOR scenarios [40]. In 2016, Hosseinzadeh 
Helaleh and Alizadeh employed SVM combined 
with three optimization algorithms—ant colony 
optimization, particle swarm optimization, and 
genetic algorithms—to predict recovery factor [41].

I n  r e c e n t  y e a r s ,  X G B o o s t  h a s  b e e n 
frequently adopted in CCUS-EOR and CO₂-WAG 
scenarios, often in combination with surrogate 
and optimization algorithms to improve prediction 
and decision-making efficiency. In 2023, Gao 
et al. proposed an XGBoost-PSO workflow. By 
generating 10,000 samples with varying geological 
and operational parameters, they trained the model 
to predict CO₂-WAG production and optimize 
injection parameters [43]. Thanh et al. [44] compared 
multiple machine-learning models in CO₂-foam 
flooding and demonstrated the superiority of 
XGBoost in recovery prediction. Nevertheless, 
XGBoost typically entails relatively high training 
and tuning costs and exhibits strong sensitivity to 
hyperparameters.

Shen et al. developed a new CO₂-EOR 
po ten t i a l - eva lua t ion  method  based  on  a 

BO-LightGBM framework. Through feature 
fusion and importance ranking, they established a 
nonlinear mapping between reservoir parameters 
and development potential [45]. This method 
not only improved predictive accuracy but also 
provided an efficient tool for rapidly screening 
blocks suitable for CO₂-EOR implementation. 
Lv et al. [46] modeled the minimum miscibility 
pressure (Minimum Miscibility Pressure, MMP) 
of CO₂–crude oil systems using deep learning and 
tree-based models, and integrated thermodynamic 
models to achieve accurate MMP prediction. 
Esfand et al. [47] constructed surrogate models 
using various machine-learning algorithms to 
capture the relationship between well-placement 
design and reservoir heterogeneity in CO₂-EOR. 
Their results suggest that the proposed models 
can effectively identify sensitivity features of 
well-pattern optimization to production dynamics, 
thereby providing quantitative references for well 
deployment and development-scheme design.

3.2	Progress in Deep-Learning-Based  
Approaches for CCUS-EOR

In practical CO₂ enhanced oil recovery (CO₂-
EOR) applications, the rapid growth of monitoring 
data, numerical-simulation outputs, and experi-
mental datasets has increasingly positioned deep 
learning (Deep Learning, DL) as an important tool 
in CO₂-EOR research. Compared with traditional 
machine-learning models, deep learning offers 
stronger nonlinear representation and automatic 
feature-extraction capabilities, enabling end-to-
end modeling under spatiotemporal coupling, non-
linear boundary conditions, and high-dimensional 
complex inputs. As a result, DL has demonstrated 
distinctive advantages in rapid prediction, his-
tory matching, optimal control, and uncertainty 
analysis for CCUS-EOR problems [48][49][50][51].  
At present, deep-learning-based surrogate models 
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exhibit diverse application scopes and strengths 
in CCUS-EOR, and a multi-path development 
landscape is gradually taking shape.

3.2.1  Convolutional neural networks
Convolutional neural networks (Convolu-

tional Neural Networks, CNN) are well suited for 
processing images and structured grid data owing 
to their local receptive fields and weight-sharing 
mechanisms. They have therefore been introduced 
into reservoir modeling to extract spatial features 
associated with reservoir heterogeneity. In CCUS-
EOR applications, CNNs are commonly used 
to predict oil and gas production under different 
injection–production settings, as well as the distri-
bution of CO₂ plumes [52]. Kim et al. [53] construct-
ed surrogate models using CNNs with average 
pooling and fully connected (Fully Connected, 
FC) layers, and demonstrated the effectiveness of 
deep CNNs in selecting well locations and well 
types, thereby broadening the application scope of 

neural networks in petroleum development. Meng 
et al. [54] developed a deep-learning surrogate 
based on a Res-U-Net architecture, organizing 
multi-source inputs—including porosity, permea-
bility, well locations, and control conditions—into 
“image-like” tensors. Through multi-scale feature 
extraction and skip-connection fusion within an 
encoder–decoder structure, the model achieved 
end-to-end rapid prediction of state variables such 
as pressure and saturation fields. These results 
indicate that CNNs can substantially reduce de-
pendence on high-fidelity full-physics simulations, 
making them suitable for rapid scenario screening 
and sensitivity analysis.

In 2024, Yan et al. [55] proposed a CNN-based 
surrogate for forecasting field production dynam-
ics and performing history matching. By using 
Latin hypercube sampling and the MATLAB 
Reservoir Simulation Toolbox to generate diverse 
discrete-fracture model samples, they employed 
six input channels to comprehensively characterize 

	 (a)	 (b)	 (c)
Fig. 3  (a) CNN-Transformer architecture. The static geological and time-varying engineering parameters are encoded to 
the latent space by the CNN encoder and MLP, respectively. Transformers are then applied to process the latent sequence, 
followed by the CNN decoder to generate predictions at all time steps simultaneously. Skip connections are used to enhance 
information flow between the encoder and decoder. The numbers at the corner of each convolutional block denote the chan-
nel. (b) Details of the convolutional blocks in the CNN encoder. (c) Details of the ResNet blocks in the CNN decoder[52].
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reservoir and fracture attributes, and used oil and 
water production as the training and validation tar-
gets. The results showed that this CNN surrogate 
achieved up to 99% accuracy in predicting oil and 
water production. Moreover, when combined with 
a genetic-algorithm-based intelligent optimization 
strategy, the CNN surrogate exhibited higher effi-
ciency and stability in automated history matching 
compared with conventional approaches.

Mo et al. [56] employed dense blocks to 
construct a model for simulating the evolution of 
subsurface CO₂ storage. Their approach encodes 
input permeability to generate a series of feature 
maps, concatenates time with these maps, and 
then decodes them to produce pressure and 
saturation distributions. Although a segmentation 
loss was introduced to address discontinuities at 
saturation fronts, the model is primarily effective 
for interpolation within the training-time window, 
while its extrapolation performance beyond that 
window remains limited. Han et al. [57] proposed 
a recurrent R-U-Net (Recurrent R-U-Net), which 
integrates temporal recurrent units into the U-Net 
backbone for spatial feature extraction, thereby 
capturing time dependence during injection–
production evolution and enabling history 
matching within a hierarchical Markov chain 
Monte Carlo framework. Building on CNN 
and temporal-network architectures, Xu et al. 
introduced a multi-head attention module to more 
accurately represent complex interwell dynamics 
and long-term dependency features during CO₂-
WAG development [58].

3.2.2 Recurrent neural networks
Recurrent neural networks (RNN) and their 

variants—such as long short-term memory (Long 
Short-Term Memory, LSTM)—have been widely 
used in recent years for production-dynamics 
prediction and history matching in CO₂-EOR, 

owing to their strengths in time-series modeling[59]. 
Through recursive state propagation, RNN 
architectures can capture temporal fluctuations 
in injection–production strategies and operating 
conditions, and are sensitive to long-term 
dependencies embedded in reservoir pressure, 
injection rates, and production profiles. Utomo 
Pratama Iskandar and Kurihara [60] utilized 
LSTM to predict time-varying oil, water, and 
gas production for existing wells, demonstrating 
improved generalizability and predictive stability 
over traditional machine-learning models across 
multiple well patterns. Ruijie Huang et al. [61] used 
up to 15 years of production data to develop an 
LSTM model for predicting oil production, gas–oil 
ratio, and water cut, and compared the results with 
numerical simulations, highlighting the efficiency 
of LSTM in handling real operational changes and 
interwell connectivity characteristics.

Davoodi et al. [64] applied LSTM models 
to a five-spot CO₂-EOR system to predict CO₂ 
storage capacity and oil recovery. Their results 
indicated that under complex spatial distributions 
and time-varying conditions, LSTM achieved 
markedly higher prediction accuracy than baseline 
models, while substantially reducing the time 
required for training and inference. Feng et al. [59] 
proposed an encoder–decoder-based ConvLSTM 
surrogate for rapidly predicting the evolution 
of pressure and saturation under dynamic CO₂ 
injection scenarios. Despite these successes, 
RNN/LSTM approaches still face limitations, 
such as vanishing or exploding gradients in 
ultra-long sequences. When injection–production 
strategies change frequently or data sampling 
intervals are inconsistent, additional architectural 
enhancements—such as attention mechanisms [66], 
segmented training strategies [60], or sliding-win-
dow formulations [62]—are often required to ensure 
training stability and predictive accuracy.
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3.2.3 Graph neural networks
In recent years, graph neural networks (GNNs) 

have developed rapidly in the oil and gas engi-
neering domain [63]. Their core advantage lies in 
their natural compatibility with unstructured grids, 
complex well-network connectivity, and irregular 
geological configurations. By directly leveraging 
graph-structured data to model reservoirs, GNNs 
can overcome the limitations of conventional 
CNNs that rely heavily on regular grids [70]. In 
CCUS-EOR, strong reservoir heterogeneity and 
complex inter-well connectivity often make it 
difficult for traditional methods to simultaneously 
achieve high efficiency and accuracy. The intro-
duction of GNNs therefore provides a new and 
promising pathway to address this challenge.

Huang et al. [68] proposed an improved 
GNN that employs attention mechanisms to 
invert the dynamic layer-by-layer connectivity 
between injection and production wells. Du et 
al. [67] combined a graph convolutional network 
(Graph Convolutional Network, GCN) with gated 
recurrent units to compute daily oil production. 
In this framework, the GCN is used to quantify 
inter-well connectivity, while the gated recurrent 
unit extracts well features and outputs production 
information. As a result, when computing the re-
sponse of a target well, wells that are not actually 
connected to the target may still be involved in 

the calculation. In 2025, Li et al. [69] developed a 
heterogeneous spatiotemporal fusion model inte-
grating relational graph convolution, Transformer, 
and LSTM for dynamic prediction of water cut 
between injectors and producers in waterflooding. 
They further introduced a hybrid optimization 
framework that combines genetic algorithms 
with multi-objective particle swarm optimization, 
enabling closed-loop prediction–optimization 
control. Numerical experiments demonstrated that 
this approach can effectively improve net present 
value while maintaining predictive accuracy.

Jiang proposed a GCN-based multiphase-flow 
simulation framework capable of efficiently 
solving pressure and saturation distributions 
on unstructured grids. The results indicate 
that the GCN model can substantially reduce 
computational cost while maintaining accuracy 
comparable to that of finite-volume methods, 
validating the feasibility and reliability of GNNs 
in reservoir numerical simulation [70]. Gudalad 
and Yan et al. [71] introduced a novel GNN-based 
deep-learning framework to accelerate simulations 
of fractured geothermal reservoirs. By encoding 
node and edge features, the GNN systematically 
represents the influence of fracture networks on 
fluid flow, heat transport, and geomechanical 
behavior, and predicts the dynamic response of 
complex geothermal systems under injection–

Fig. 4  Schematic of sequential sage (SeqSage) GNN model [71].
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production operations. Although this work focuses 
on geothermal systems, its findings offer valuable 
insights for understanding multi-physics processes 
in fractured reservoirs subjected to CCUS-EOR.

In 2024,  Ju et  al .  [72] combined graph 
convolution with LSTM to develop a graph 
convolutional long short-term memory network 
that effectively captures the spatiotemporal 
migration of CO₂ plumes in faulted reservoirs. The 
model maintained high accuracy under various 
fault geometries while substantially reducing 
computational cost, with single-run inference time 
reportedly around one percent of that required 
by conventional simulations. In 2025, Zhuang et 
al. [73] constructed a GNN–Transformer surrogate 
to predict CCUS-EOR dynamics and storage 
capacity, and integrated a multi-objective particle 
swarm optimization algorithm to adjust well 
placement and controls for maximizing both oil 
production and storage. Tariq et al. [74] proposed 
an enhanced GCN based on a U-Net backbone 
for rapid prediction of saturation and pressure 
evolution of CO₂ plumes in saline aquifers. 
Compared with traditional numerical simulation, 
this approach significantly reduced computational 
cost while achieving near-physics-level accuracy 
across multiple test scenarios.

Overall, GNNs have demonstrated clear ad-
vantages in reservoir simulation and CCUS-EOR 
studies. They can represent complex unstructured 
grids and well-network topologies, achieving 
high predictive accuracy with markedly reduced 
computational overhead. Current research has 
primarily focused on plume-migration prediction, 
connectivity analysis in faulted reservoirs, and 
fast surrogate computation of pressure–saturation 
fields. Nevertheless, it should be noted that much 
of the existing work remains at the numerical-ex-
periment stage. The adaptability to field-scale 

dynamic data, model generalization capability, 
and deeper integration with physics-constrained 
approaches still require further investigation.

3.2.4 Fourier Neural Operator
The Fourier Neural Operator (FNO) is an 

efficient framework for solving partial differential 
equations (PDEs) popularized by Caltech [75]. 
The method first transforms input features into 
the frequency domain via a Fourier transform, 
evolves the representations in the spectral space, 
and then applies an inverse Fourier transform 
to obtain updated features. In 2022, Zhang et al. 
[76] applied FNO to solve two-dimensional oil–
water two-phase flow PDEs. By introducing the 
fast Fourier transform to extract PDE information 
and incorporating physical constraints, their 
method efficiently predicted the evolution of 
saturation and pressure. It demonstrated excellent 
accuracy and generalization in both forward and 
inverse problems, highlighting its potential as an 
alternative to traditional numerical simulation.

Also in 2022, Chu et al. [77] addressed the high 
computational cost of CO₂ storage simulation in 
shale–sandstone composite reservoirs by propos-
ing a deep-learning-based RU-FNO architecture to 
predict CO₂ plume migration and pressure buildup 
under complex reservoir conditions. The method 
reportedly achieved more than an 8000× speedup 
over conventional numerical simulation for 
saturation and pressure prediction, with improved 
accuracy, making it particularly suitable for in-
vestigating CO₂ migration governed by thin shale 
layers. In 2023, Liu et al. [78] developed a 4D (x, 
y, z, t) flow simulation framework that combines 
FNO with domain decomposition, successfully 
extending FNO from conventional 3D spatiotem-
poral settings to a four-dimensional space–time 
domain. This framework trains multiple 3D FNO 
networks in parallel and couples them in the z 
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direction, enabling efficient simulation of complex 
flows in fractured reservoirs within CCUS-EOR 
compositional models.

In 2024, Yang et al. [79] proposed an FNO-
based surrogate model for CCUS-EOR in 
three-dimensional heterogeneous reservoirs to 
enable rapid prediction of reservoir-property 
distributions. The study showed that the model can 
accurately capture key displacement features in 
CCUS-EOR, including front propagation, gravita-
tional effects, and crossflow. Compared with con-
ventional compositional simulation, the approach 
achieved an approximately 360× improvement in 
computational efficiency, demonstrating strong po-
tential for rapid well-placement optimization and 
parameter inversion in CCUS-EOR projects. In 
2025, Liu et al. [80] proposed a DL-NRS framework 
that integrates FNO with low-resolution numerical 
simulation results to reconstruct high-resolution 
pressure and saturation evolution. By introducing 
physics-constrained loss functions and leveraging 
low-resolution simulation data for up sampling 
and training, the framework produced results 
close to high-resolution numerical solutions. The 
reported average relative errors for both pressure 
and saturation were below 1%, with a substantial 
reduction in computational cost, indicating strong 
applicability to rapid dynamic prediction for large-
scale reservoirs.

3.2.5 Large Language Models
Large language models (LLMs) typically 

refer to models built upon Transformer backbones. 
Owing to their advantages in long-sequence mod-
eling and adaptive feature learning, Transformer 
architectures have increasingly entered the field 
of reservoir engineering modeling and prediction. 
Compared with RNN/LSTM, Transformers 
employ multi-head self-attention (Multi-head 
self-attention, MSA) to effectively model long-

range dependencies, mitigate vanishing-gradient 
issues, and deliver improved performance in 
multi-scale dynamic forecasting. In CCUS-EOR 
research, the introduction of Transformers has 
provided new methodological support for history 
matching, production forecasting, and identifica-
tion of gas-channeling pathways.

In 2023, Zhang et al. [81] proposed a Trans-
former-based surrogate to address the limited 
parallelism and high training overhead of tradi-
tional RNN approaches for reservoir production 
prediction. Through multi-head self-attention, the 
model effectively captured complex dependencies 
between input features—such as water-injection 
rates, drilling decisions, well locations, porosity, 
and permeability—and production responses[82]. 
A sequence-to-sequence structure further enabled 
long-horizon extrapolation. The results showed 
that incorporating additional information such as 
drilling and well locations significantly improved 
prediction accuracy, yielding more reliable 
performance than models that rely solely on 

Fig. 5  Architecture of the proposed FDO-Transformer 
showing inputs, outputs, and encoder internals. The same 
forward pass is used across train and test splits.
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injection-rate inputs. Meanwhile, compared with 
RNN baselines, the Transformer achieved roughly 
a fourfold speedup while maintaining similar 
predictive accuracy.

In 2024, Jia et al. [84] explored a new applica-
tion of Transformers for production forecasting 
by proposing a Transformer-based deep neural 
network to predict productivity after refracturing 
operations. The method effectively captured 
nonlinearities and long-range dependencies 
in production curves, substantially improving 
prediction accuracy and offering new insights 
for performance evaluation in unconventional 
reservoirs. In 2025, Liu et al. [85] further proposed 
an automated history-matching framework that 
integrates GNNs, Transformers, and optimization 
algorithms. By enhancing inter-well connectivity 
representations with attention mechanisms and 
combining intelligent optimization to invert 
injection–production relationships, the framework 
achieved improved matching accuracy and 
stability in complex injection–production systems, 
providing technical support for closed-loop 
control.

Also in 2025, Feng et al. [52] developed a 
CNN–Transformer hybrid surrogate that combines 
the local feature-extraction capability of convolu-
tional networks with the global temporal modeling 
strength of Transformers for multi-objective 
robust optimization in geological carbon storage. 
The results indicated stronger robustness and 
generalization under complex reservoir conditions. 
Xiao et al. [82] proposed a unified deep-learning 
framework that fuses static geological parameters 
with dynamic production data and enhances tem-
poral-dependency modeling via Transformers, en-
abling joint prediction of CO₂-EOR performance 
and carbon storage capacity. The results showed 
clear accuracy improvements over conventional 
data-driven models, while providing high-con-

fidence assessments of both static and dynamic 
performance. Li et al. [86] offered a representative 
example of a graph-attention plus self-attention 
spatiotemporal fusion model. In fractured–vuggy 
carbonate reservoirs characterized by complex 
geological connectivity, nonstationary data, and 
strong well-pattern interactions, the method 
demonstrated superior predictive performance 
compared with traditional time-series models.

4 Progress in Data–Physics Coupled 
Methods for CCUS

In mechanistic studies and engineering 
practice of reservoir development, improving 
computational efficiency while preserving physical 
consistency has long been a central challenge for 
CCUS-EOR simulation and history matching. 
Convent ional  fu l l -physics  composi t ional 
simulators can comprehensively capture complex 
mechanisms such as pressure propagation, 
phase-behavior evolution, and the formation 
of gas-channeling pathways. However, their 
computational cost is prohibitive. This limitation 
is particularly pronounced in high-resolution 
three-dimensional geological models, where such 
simulators often cannot support the hundreds 
or even thousands of runs required for history 
matching and optimization. In contrast, purely 
data-driven methods offer clear advantages in 
computational speed, yet their lack of essential 
physical constraints commonly leads to biased 
predictions when extrapolating to unseen operat-
ing conditions or complex phase-regime scenarios, 
falling short of the reliability demands of field 
applications.

Against this backdrop, a series of data–
physics coupled approaches has been proposed 
in recent years to reconcile “physical-mechanism 
fidelity” with “data-driven efficiency.” The central 
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idea is twofold: on the one hand, to introduce 
physical priors or constraints to varying degrees 
so as to reduce the effective freedom of purely 
data-based models under complex reservoir 
conditions, thereby enhancing predictive accuracy 
and extrapolation capability; on the other hand, 
to leverage data-driven techniques to accelerate 
or compensate for traditional numerical models, 
alleviating their high computational burden.

Broadly, data–physics coupled methods 
can be categorized into the following types: 
(1) Analytical or semi-analytical models based 
on simplified governing equations and data 
fitting, with representative examples including 
the Capacitance Resistance Model (CRM) and 
the Inter-well Simulation Model (INSIM). By 
simplifying physical control equations and 
performing parameter inversion using production 
data, these models have been widely used for rapid 
history matching and quantitative characterization 
of inter-well connectivity. (2) Physics-constrained 
deep-learning methods, typified by Physics-In-
formed Neural Networks (PINNs), which directly 
embed PDE residuals into loss functions to enable 
end-to-end prediction of pressure fields, saturation 
evolution, and component transport.

4.1	Simplified Physics-Based Approaches

In the evolution of data–physics coupled 
methods, one of the earliest lines of research 
focused on introducing production-dynamics 
data into frameworks with simplified governing 
equations for parameter inversion. This idea was 
first proposed by Albertoni et al. [87] and Yousef et 
al. [88]. The Capacitance Resistance Model (CRM) 
conceptualizes a reservoir as a flow-network 
system composed of connectivity units between 
injectors and producers. Along each connectivity 
pathway, CRM solves simplified flow equations 
associated with pressure and saturation, while 

wellhead allocation is determined using empirical 
relations. With a relatively low computational 
burden, CRM can rapidly reflect inter-well 
connectivity and has therefore been widely applied 
to dynamic matching and connectivity analysis in 
multi-well systems.

However, the physical simplifications adopted 
by CRM also impose clear limitations. First, 
the productivity index and allocation (splitting) 
coefficients are typically assumed to be constant 
throughout the simulation, making it difficult to 
represent dynamic adjustments caused by changes 
in field injection–production strategies or wellbore 
operating conditions. Second, the fractional-flow 
formulation used to compute phase rates is derived 
mainly from empirical correlations rather than 
rigorous physics-based descriptions. Third, con-
strained by its analytical formulation, CRM cannot 
directly impose bottom-hole pressure (BHP) control 
in prediction and optimization workflows [89].

In subsequent developments, researchers 
have attempted to extend CRM to CO₂-EOR and 
carbon-storage scenarios. In 2008, Sayarpour inte-
grated CRM with an allocation model to establish 
a history-matching and performance-prediction 
tool applicable to both waterflooding and CCUS-
EOR, and validated the approach using multiple 
field cases[90]. The results indicated that, as a light-
weight surrogate model, CRM can substantially 
reduce computational cost in history matching 
and optimization, while also supporting reservoir 
uncertainty quantification and performance 
evaluation. In 2012, Nguyen et al. [91] proposed 
the Integrated Capacitance Resistance Model 
and validated it in an Omani oilfield as well as in 
multiple synthetic CCUS-EOR cases. In 2016, 
Eshraghi et al. [92] introduced the Gentil fraction-
al-flow formulation into the CRM framework and, 
combined with heuristic intelligent optimization 
algorithms, developed an optimization approach 
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suitable for miscible CCUS-EOR.

In 2014, Zhao Hui et  al .  [93] proposed 
a s impli f ied representat ion of  inject ion–
production systems and developed an inter-well 
connectivity model based on dynamic injection–
production data. Through dynamic matching, 
this method enables rapid inversion of inter-well 
formation parameters while capturing connectivity 
relationships. Building on this work, Zhao et al. 
(2015) [94] proposed the INSIM framework that 
couples physics-based modeling with data-driven 
strategies, enabling efficient prediction of two-
phase oil–water flow [95]. In 2016, Zhao et al. [96] 
incorporated aquifer effects into the model and 
explored its potential for production optimization. 
In the same year, they proposed a layered con-
nectivity analysis approach and further developed 
an inter-well connectivity inversion model for 
multilayer waterflooding reservoirs [97].

Regarding broader applications, Guo et al. 
(2018) [98] developed the INSIM-FT model, in 
which a front-tracking approach was used to 
improve saturation computations based on the 
Buckley–Leverett equation, thereby enhancing 
water-cut prediction accuracy and enabling 
production-optimization studies [99]. In 2019, 
Zhao et al. proposed a rapid evaluation method 
for injector efficiency and fast optimization of 
injection–production strategies within the INSIM 
framework [100]. In the same year, Guo incorporat-
ed gravity effects and developed a corresponding 
three-dimensional extension [101]. Further advances 
include the INSIM-FPT model proposed by 
Zhao et al. (2020) [102], which integrates node 
densification and path-tracking algorithms to 
compute key parameters such as inter-well flow 
paths and allocation coefficients. In 2021, Liu 
et al. [103] proposed a rapid injection–production 
rate-optimization method for oil and water wells 
based on oil-saturation evaluation. Zhao et al. 

further expanded model capabilities by developing 
the INSIM-FPT-3D model with gravity effects and 
introducing a new well-index formulation to im-
prove BHP calculation accuracy [104]. Meanwhile, 
Liu et al. (2021) also employed these models for 
dynamic prediction of profile-control and plugging 
treatments, demonstrating that the approach 
can effectively forecast post-treatment reservoir 
behavior and guide optimization design [105].

Despite the demonstrated efficiency and 
practical value of INSIM and its variants in 
rapid dynamic prediction, history matching, 
and production optimization, several limitations 
remain. First, the basic INSIM framework was 
originally designed for two-phase oil–water 
displacement. Although later extensions have been 
made to polymer flooding and three-dimensional 
settings, the model still struggles to fully capture 
key mechanisms in CCUS-EOR scenarios with 
pronounced phase-behavior complexity, such 
as dissolution, extraction, swelling, and gas 
channeling. Second, while improvements such 
as front tracking and path tracing have enhanced 
performance, the underlying physical approxima-
tion remains largely rooted in Buckley–Leverett 
theory. This can lead to non-negligible deviations 
in representing capillarity, gravity, and strongly 
nonlinear displacement conditions.

The  l imi ta t ions  o f  CRM and  INSIM 
have motivated the development of numerical 
flow-network models [106]. In such models [107], the 
one-dimensional inter-well connectivity pathways 
are discretized, and the governing equations are 
solved numerically. Compared with CRM or 
INSIM, numerical flow-network models offer 
greater flexibility. For example, owing to the 
discretized formulation, each well can be assigned 
an independent well grid, which allows the direct 
use of conventional well models for bottom-hole 
pressure (BHP) calculations. This feature enables 
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the model to incorporate BHP data during history 
matching and to impose BHP control during 
forecasting. In addition, the mathematical frame-
work of this approach allows the introduction of 
arbitrary governing equations, making it possible 
to extend flow-network modeling to more complex 
physical processes, such as thermal recovery or 
compositional flow. This flexibility, however, 
comes at the cost of increased computation. In 
most cases, nevertheless, the number of grids 
required by flow-network models remains far 
smaller than that of full 3D geological models.

In 2018, Lutidze proposed the StellNet 
model [107], whose key distinction from traditional 
flow-network models lies in the introduction of 
the concept of “well cells.” Well cells refer to 
reservoir grid blocks perforated by a wellbore. 
Different connectivity pathways can interact 
through these well cells without requiring actual 
fluid entry into or exit from the wellbore. This 
enhancement significantly increases the number 
of potential flow paths and improves the model’s 
capability to represent complex connectivity. 
In this sense, the well-cell concept plays a role 
similar to that of “virtual wells”.

In 2019, Ren et al. [108] developed GPSNet 
at Chevron as a network model built on a gener-
al-purpose numerical simulator. GPSNet inherits 
the essential ideas of StellNet, while using a com-
mercial simulator to evolve the network model. 
Based on this platform, layered workflows were 
proposed and successfully applied to reservoir 
history matching and waterflooding optimization 
[109][110]. GPSNet was subsequently extended to 
GPSNet-2D, where two-dimensional connectivity 
pathways were used for history matching and 
optimization in steamflood reservoirs [111]. Wang 
et al. [112] further expanded GPSNet to address 
rapid decline analysis and interwell interference 
in unconventional reservoirs, and introduced a 

dual-grid system for coupled solutions.

Along a similar line, Kiærr et al. [113] proposed 
and open-sourced FlowNet for production 
prediction and optimization. Rao et al. [114] further 
explored how to integrate physical constraints 
wi th  da ta-dr iven methods  wi th in  a  more 
generalized framework. A representative outcome 
is the recently proposed general physics-driven 
data-driven paradigm, which takes governing 
equations as the core and combines data assim-
ilation with fast surrogate modeling to achieve 
unified modeling and solution for reservoir 
simulation and history matching. Like FlowNet, 
this framework emphasizes interwell connectivity 
and network-based representation, but goes further 
by coupling physical equations with data-driven 
algorithms. It thus reduces computational cost 
while preserving physical consistency, and offers 
strong generalizability and flexibility.

In 2022, Zhao et al. [115] proposed a FlowNet-
based method tailored to the development 
characteristics of hydraulically fractured wells in 
shale gas and tight-oil reservoirs. Without relying 
on complex geological modeling, the approach 
constructs an inter-well connectivity network 
and incorporates fracture-treatment parameters 
to enable rapid history matching and production 
forecasting for fractured wells. This method effec-
tively reduces the modeling cost of tight-reservoir 
simulation and achieved high predictive accuracy, 
demonstrating the applicability of FlowNet to un-
conventional-reservoir development. In 2024, Xu 
et al. [116] applied FlowNet to CO₂ water-alternat-
ing-gas (WAG) scenarios and established a rapid 
history-matching and production-optimization 
framework. By using network-based representa-
tions to simplify injector–producer connectivity 
calculations and coupling optimization algorithms 
to identify rational injection–production strategies, 
the method was able to reproduce production his-
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tory in typical CO₂-WAG cases while significantly 
reducing computational time and supporting 
operational optimization.

Despite the promising potential of GPSNet 
and FlowNet for rapid history matching, produc-
tion forecasting, and optimization control, several 
limitations remain. Under complex network 
structures or long-term iterative workflows, 
convergence issues may arise, manifested as 
reduced numerical stability or slower convergence 
during parameter inversion. These issues can 
be particularly pronounced for large-scale well 
networks and long-horizon forecasts.

In 2023, Zhao Hui et al. [117] further developed 
the theoretical framework of the Connecting Ele-
ment Method (CEM) based on INSIM, positioning 
it not only as a computational approach but also as 
a physics–data-driven modeling tool. Typical test 
cases verified its feasibility and extensibility for 
multiscale two-phase flow simulations.  Liu et al. 
[118] combined CEM with data-space inversion and 
proposed an efficient modeling scheme oriented 
toward closed-loop optimization, offering a new 
pathway for history matching and production 
optimization in complex reservoirs. Zhao et al. 
[119] applied CEM to two-phase flow simulation 
in multiscale fractured reservoirs, significantly 
reducing dependence on fine-grid discretization 
and enabling efficient characterization of fracture–
matrix coupled flow. Subsequent work by Xu 
Yunfeng et al. [120] extended this line of research 
to CCUS-EOR, proposing CEM-based CO₂ 
simulation and channeling-pathway prediction 
methods. This provides a new physics–data-driven 
tool for gas-channeling identification and control.

4.2	Physics-Informed-Neural-Network-Based 
Surrogate Models

As a representative approach that couples 
deep learning with physical constraints, phys-

ics-informed neural networks (Physics-Informed 
Neural Networks, PINNs) have been increasingly 
introduced into modeling for oil and gas reservoir 
development in recent years. The core idea 
of PINNs is to embed the governing partial 
differential equations (PDEs) of reservoir flow—
such as mass conservation, Darcy’s law, and 
phase-equilibrium relations—directly into the loss 
function. In this way, neural networks are trained 
not only to fit observational data but also to satisfy 
fundamental physical laws [121]. Compared with 
purely data-driven models, PINNs generally ex-
hibit stronger physical consistency when training 
samples are limited or when predictions must be 
extrapolated to unseen operating conditions. This 
makes them particularly suitable for complex 
multiphase flow problems such as CCUS-EOR [122].

In 2023, Han et al. [123] proposed a domain-de-
composition PINN framework (PINN-DD). By 
partitioning the reservoir into two subdomains—
regions with wells and regions without wells—and 
imposing governing-equation and boundary-con-
dition constraints separately, the method improved 
modeling accuracy under sparse production-data 
conditions. The results indicated that PINN-DD 
can maintain reliable predictive performance 
with limited monitoring data and shows stronger 
stability and generalization than conventional 
PINNs. In 2024, Han et al. [124] introduced a Criss-
Cross Physics-Informed Convolutional Neural 
Network (CC-PINN) to address a key shortcoming 
of traditional PINNs in strongly heterogeneous 
reservoirs, namely the difficulty in ensuring inter-
cell flux continuity. By combining automatic dif-
ferentiation with 2D CNNs and introducing criss-
cross physical constraints within the convolutional 
structure, the network learns parameterized PDE 
solutions while enforcing flux continuity between 
neighboring grid cells. Benchmark tests on mul-
tiple strongly heterogeneous reservoir problems 
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showed that CC-PINN substantially outperforms 
standard PINNs, improving cross-boundary flux 
accuracy and demonstrating greater robustness 
under complex geological conditions.

Also in 2024, Liu et al. [125] proposed a hard–
soft constrained PINN framework (HS-PINN). 
This method introduced a Lorentz-based soft con-
straint and hard boundary-condition enforcement 
for predicting near-well pressure fluctuations, 
thereby maintaining high accuracy and stability 
under complex geology. Their results reported 
prediction errors below 1% in both single-well 
and multi-well cases, while the computational 
cost was only about 8% of that of conventional 
simulations, indicating a promising tool for rapid 
uncertainty quantification[126]. In 2025, Liu et al. 
[127] applied PINNs to the convection equations 
of polymer-flooding reservoirs and developed a 
high-accuracy model for predicting water satura-
tion and polymer concentration distributions. They 
observed that using a single network to handle 
the two variables outperformed a dual-network 
structure in both accuracy and convergence speed. 
Numerical stability was further enhanced by 
introducing an artificial viscosity coefficient.

Nevertheless, a single PINN framework 
s t i l l  faces  chal lenges  when deal ing wi th 
high-dimensional complex equations, irregular 
grids, and strongly nonlinear physical processes. 
These challenges include convergence difficulties, 
high training cost, and sensitivity to boundary 
conditions. To further enhance the adaptability 
and generalization of deep-learning models in 
reservoir-development studies, researchers have 
begun exploring more diverse physics–data 
fusion strategies. A shared characteristic of these 
methods is the explicit or implicit incorporation 
of physical knowledge in network architectures, 
loss design, or training workflows. This helps 
overcome the “fast but unstable” limitation of 

purely data-driven models, while also alleviating 
optimization bottlenecks associated with the 
single-route PINN paradigm.

I n  2 0 2 0 ,  W a n g  e t  a l .  [ 1 2 8 ]  p r o p o s e d 
theory-guided neural networks (Theory-guided 
Neural Networks, TgNN) for groundwater-flow 
and solute-transport modeling, demonstrating 
that the method can retain high accuracy even 
under limited-data conditions. In 2021, Xu et al. 
[129] further developed a weak-form theory-guided 
network, replacing strong-form constraints with 
weak-form formulations and thereby significantly 
improving numerical stability under complex 
boundary conditions. In the same year, Wang et 
al. [130] proposed a physics-constrained training 
strategy that combines the finite difference method 
(Finite Difference Method, FDM) with CNNs. 
In this approach, governing equations are first 
discretized using FDM. The residuals of the 
discretized PDEs are then computed based on 
CNN predictions and minimized during training 
to introduce physical constraints. Unlike Sobel 
filtering, FDM can simultaneously compute spatial 
and temporal gradients.

In 2025, Chen et al. [131] proposed physics-in-
formed graph neural networks (PIGNN), integrat-
ing physical constraints with graph structures to 
address the insufficient flux accuracy of traditional 
PINNs in irregular grids and strongly heterogene-
ous reservoirs. PIGNN substantially reduced errors 
and improved computational efficiency in pressure 
prediction for spatially heterogeneous reservoirs, 
with an average R² of 0.998, demonstrating 
superior performance over standard PINNs. Zhang 
et al. [132] introduced a physics-based deep CNN 
framework for simulating and predicting reservoir 
pressure fields. In this work, a finite-volume for-
mulation was used to compute governing-equation 
residuals, thereby incorporating physics into the 
learning process. To handle transient problems, a 
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sequence of CNNs was trained, with each network 
responsible for predicting pressure at a single time 
step. The output of one CNN served as the input to 
the next, enabling stepwise temporal forecasting.

Wang  e t  a l .  [133] deve loped  a  Hybr id 
Physics-Informed Data-Driven Neural Network 
(HPDNN) for simulating CO₂ storage dynamics 
in depleted shale reservoirs. Built on a fully con-
nected neural network (FCNN), HPDNN captures 
relationships between static and spatiotemporal 
reservoir attributes (e.g., thickness, porosity, 
wellbore storage, injection rate) and injection 
responses (e.g., CO₂ injection pressure differential 
and stored CO₂ volume). The model adopts a 
hybrid training strategy that integrates data-driven 
learning with physics-based constraints. Training 
datasets are generated by numerical simulators, 
while multiscale CO₂ transport mechanisms—
including diffusion, adsorption, dissolution, 
slip flow, and Darcy flow—are incorporated as 
physical information to constrain network training. 
After training, HPDNN can accurately predict CO₂ 

injection dynamics and storage capacity. It also 
serves as a valuable tool for estimating reservoir 
parameters from dynamic injection profiles, which 
are critical for inverse modeling in geological 
storage. By leveraging HPDNN, engineers 
can bypass conventional, labor-intensive, and 
computationally expensive numerical simulations 
required for complex CO₂ storage systems, thereby 
significantly improving inversion efficiency.

In  2024,  Nagao and Dat ta-Gupta  [134] 
proposed a physics-constrained hybrid neural 
framework that combines simplified physical 
models with PINNs for production prediction 
and interwell-connectivity identification in CO₂-
EOR scenarios. The framework first generates 
approximate solutions using simplified physics 
to reduce model complexity, and then introduces 
PDE constraints and physical regularization in 
the loss function to ensure physically consistent 
predictions. Tests on benchmark cases and field 
data showed that this hybrid approach outperforms 
purely machine-learning methods in predicting 

Fig. 6  The overall workflow of the PINN-GCEM model[135]
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multiphase production rates and identifying 
inter-well connectivity, offering stronger physical 
interpretability and prediction stability. The results 
suggest that the method can balance computational 
efficiency and physical realism, providing a 
feasible pathway toward real-time optimization 
and closed-loop control for CO₂-EOR.

In 2025, Xu et al. [135] proposed the PINN-
GCEM framework, integrating the connecting 
element method, GNNs, and PINNs to achieve 
inter-well connectivity identification and dynamic 
production prediction. This approach reportedly 
outperforms conventional models in both accuracy 
and efficiency, accurately capturing complex 
inter-well connectivity and demonstrating 
potential for real-time applications in CO₂-EOR 
optimization.

5 Conclusions and Perspectives

5.1	Conclusions

(1) Numerical simulation of CCUS-EOR has 
evolved from improved black-oil/pseudo-compo-
sitional models, to K-value models, and ultimately 
to EOS-based fully compositional models. Fully 
compositional simulation can more systematically 
capture key mechanisms such as dissolution, 
extraction, swelling, and miscibility effects. 
However, its high computational cost in large-
scale three-dimensional models and in iterative 
history matching/optimization renders the conflict 
between “high fidelity” and “high efficiency” 
a primary bottleneck that constrains rapid field 
decision-making.

(2) To address this bottleneck, three major 
acceleration routes—multiscale, streamline, and 
reduced-order modeling—have each demonstrated 
distinct strengths. Multiscale methods embed fine-
scale heterogeneity into coarse-scale solutions 

from the perspective of spatial discretization; 
streamline methods enable efficient scenario 
screening in convection-dominated settings; and 
reduced-order models are well suited to serve 
as fast prediction kernels in the outer loops of 
history matching and optimization. Together, 
these approaches have laid the groundwork for 
engineering-grade CCUS-EOR simulation frame-
works with “controllable accuracy” and “affordable 
runtimes.”

(3) Purely data-driven machine-learning and 
deep-learning methods have shown clear efficien-
cy advantages in production forecasting, rapid 
MMP estimation, and well-pattern/well-control 
sensitivity analysis. In particular, emerging archi-
tectures such as GNNs, FNOs, and Transformers 
offer stronger representational power for complex 
well-network topologies and spatiotemporal 
coupling. Nevertheless, their reliability remains 
constrained by the representativeness of training 
samples, physical consistency, and generalization 
to out-of-distribution operating conditions.

(4) Data–physics coupled approaches have 
become one of the most engineering-promising 
directions. Simplified-mechanism models such as 
CRM/INSIM, network-based frameworks such 
as FlowNet/GPSNet, and physics-constrained 
deep-learning paradigms including the connecting 
element  method and PINN-based models 
provide scalable and unified frameworks for 
inter-well-connectivity identification, dynamic 
prediction, and rapid optimization in complex 
heterogeneous reservoirs.

5.2	Perspectives

(1) Enhancing low-dimensional representa-
tions of complex phase behavior. For near-mis-
cible or miscible CCUS-EOR involving intricate 
dissolution, extraction, and asphaltene-pre-
cipitation phenomena, future research should 
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develop more efficient phase-behavior surrogates. 
Alternatively, more accurate compositional flash 
algorithms can be embedded into simplified 
physics frameworks (e.g., connecting-element and 
network models) to overcome current limitations 
in representing complex thermodynamics.

(2) Building high-trust physics–data deep-fu-
sion architectures. Future efforts should further 
explore how physical constraints are imposed, 
shifting from soft constraints (loss-function penal-
ties) toward hard constraints (architecture design 
and operator learning). For example, physics-en-
coded Transformers or GNNs could be advanced 
to satisfy conservation laws while retaining strong 
capability in handling unstructured grids and long-
range spatiotemporal dependencies.

(3) Improving robustness under small-sample 
and noisy data regimes. Field data are often 
sparse and noisy. Future models should integrate 
uncertainty quantification with transfer learning or 
few-shot learning to enhance inversion accuracy 
and practical value under limited monitoring 
conditions.

(4) Toward real-time optimization for 
closed-loop control. The ultimate goal is to 
embed efficient predictive models into real-time 
product ion-opt imizat ion and closed- loop 
management systems, enabling a transition from 
“offline evaluation” to “online regulation,” thereby 
maximizing both the economic performance and 
storage efficiency of CCUS-EOR.
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