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Abstract: Carbon dioxide enhanced oil recovery with geological storage has attracted increasing atten-
tion because it can simultaneously improve hydrocarbon recovery and reduce emissions. Accurate and
efficient prediction of development performance, together with reliable support for injection—production
design and optimization, has therefore become a central scientific and engineering challenge. Numerical
simulation for carbon dioxide flooding has evolved from improved black-oil and pseudo-compositional
formulations to K-value approaches and, more recently, equation-of-state-based compositional models.
Although compositional simulation offers high mechanistic fidelity, it suffers from severe computational
burdens in high-resolution three-dimensional models and in iterative workflows for history matching
and optimization. To alleviate these constraints, three complementary acceleration routes have been de-
veloped, including multiscale methods that embed fine-scale heterogeneity into coarse-scale solutions,
streamline-based methods that leverage convection-dominated flow characteristics, and reduced-order
models that compress the state space for rapid iterative evaluation. In parallel, data-driven surrogate
models have progressed rapidly with the growing availability of production, monitoring, and simulation
data. These approaches enable fast forecasting, sensitivity analysis, and multi-objective decision sup-
port, yet their reliability remains limited under complex phase behavior and out-of-distribution operat-
ing conditions. Recent data—physics coupling paradigms, represented by simplified mechanistic models,
network-based flow models, and physics-constrained deep-learning frameworks, provide promising
pathways to reconcile physical consistency with computational efficiency. This review synthesizes the
evolution, applicability boundaries, and engineering performance of these methods, and highlights fu-
ture directions toward trustworthy, field-oriented intelligent simulation and closed-loop optimization in
highly heterogeneous reservoirs.

Keywords: CCUS-EOR; Numerical simulation; Reduced-order models; Deep learning; Data—physics
coupling; Physics-informed neural networks
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1 Introduction

In the evolution of enhanced oil recovery
(EOR) technologies, CCUS-EOR has attracted
extensive attention because it can simultane-
ously increase oil recovery and contribute to
carbon-emission reduction. Accurately predicting
the development performance of CCUS-EOR
and providing reliable support for the rational
design of field injection—production schemes have
become central scientific and engineering issues in
integrated CO.-EOR and storage research ', Since
the 1970s, numerical simulation methods, owing
to their strong capability in mechanism-based
description and broad adaptability, have gradually
become the most important technical approach in
both CCUS-EOR research and practice *. Focus-
ing on the phase behavior and multicomponent
mass-transfer characteristics of CCUS-EOR,
three major numerical simulation frameworks

have been established: the improved black-

oil (pseudo-compositional) model, the K-value
model, and the equation-of-state (EOS)-based
compositional model. These approaches differ in
physical fidelity, computational complexity, and
scope of application, and each has played a critical

role at different stages of development"’.

In early studies, the pseudo-compositional
model introduced the concept of a “solvent” into
the traditional black-oil framework, enabling an
engineering-level approximation of CCUS-EOR
with relatively high computational efficiency !
However, its pseudo-component configuration is
largely experience-dependent, making it difficult
to faithfully represent CO: dissolution, extraction,
and swelling effects under high-pressure and
high-temperature conditions. Its capability to
describe the continuous evolution of phase
behavior under miscible and immiscible condi-
tions is also limited. The K-value model, which
employs empirical or semi-empirical gas—liquid
equilibrium constant formulations, can capture
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limited dissolution and mass-transfer processes
under immiscible conditions and thus offers strong
engineering adaptability. Yet, once the pressure
exceeds the minimum miscibility pressure, the
coupled effects of complex multicomponent mass
transfer and phase behavior cause the accuracy of
empirical K-value approximations to deteriorate
significantly. To overcome these limitations,
EOS-based compositional models have grad-
ually become the mainstream for CCUS-EOR
simulation, as they can more comprehensively
characterize the phase behavior of the CO.—crude
oil system and the key associated effects such as
viscosity reduction and interfacial tension lower-
ing. Nevertheless, in large-scale three-dimensional
high-resolution geological models, EOS iterations
and strongly coupled solutions lead to substantial
computational overhead. As a result, the runtime
of a single simulation increases markedly, while
the cost of history matching and optimization in
outer-loop workflows can escalate almost expo-
nentially, thereby constraining their application in
rapid prediction and engineering decision-making.

To address the practical bottlenecks faced
by compositional models, researchers have
proposed various acceleration strategies without
altering the underlying conservation laws and
governing physical equations. These efforts can
be broadly categorized into three logically distinct
yet complementary technical routes: multiscale
methods from the perspective of spatial discre-
tization, streamline-based methods grounded in
flow-dynamics characteristics, and reduced-order
methods centered on state-space rank reduction.
Each route offers unique advantages in preserving
dominant heterogeneity effects, improving com-
putational efficiency for convection-dominated
systems, and enabling fast iterations for history
matching and optimization, thereby providing an

important foundation for “physically controllable
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acceleration” in integrated evaluation of CCUS-
EOR and storage.

Meanwhile, with the accumulation of
production and monitoring data and the rapid
advancement of computational intelligence, purely
data-driven machine learning and deep learning
surrogate models have increasingly emerged as a
major research direction for CCUS-EOR simula-
tion and optimization. By learning the input—out-
put mapping, these methods significantly reduce
dependence on geological modeling and numerical
discretization and deliver clear advantages in
predictive efficiency. However, under complex
phase-behavior conditions and when extrapolating
to unseen operating scenarios, their reliability
may be insufficient due to the lack of physical
constraints. To balance “physical-mechanism
fidelity” and “data-driven efficiency,” recently
developed data—physics coupled paradigms—such
as simplified-mechanism-based CRM/INSIM,
networked/graph-structured surrogates, and
physics-constrained deep models—have provided
a more unified and engineering-promising frame-
work and new pathways for efficient prediction,
connectivity identification, and closed-loop
optimization in integrated CO»-EOR and storage.

Building on the above background, this
paper addresses the key demands of integrated
prediction and optimization for CO2-EOR and
storage. We systematically review the evolution
and applicability boundaries of three major numer-
ical simulation frameworks, summarize the core
concepts and field performance of physics-based
acceleration approaches including multiscale,
streamline, and reduced-order methods, and
examine the latest advances in machine learning/
deep learning surrogates for joint CO2-EOR
and storage prediction, history matching, and
multi-objective optimization. Particular emphasis

is placed on data—physics coupled approaches,
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with a focused discussion of their advantages
and remaining challenges in enhancing model
reliability, generalizability, and interpretability.
Through comparative analyses of these technical
pathways, this paper aims to provide a reusable
technical roadmap and informed perspectives on
future research directions for rapid evaluation
and decision support of integrated CO»-EOR and

storage in complex heterogeneous reservoirs.

2 Computational Bottlenecks in CCUS-
EOR Simulation and Dimension-
Reduction Acceleration Pathways

2.1 Computational Bottlenecks in CCUS-EOR
Simulation

In the evolution of enhanced oil recovery
(EOR) technologies, CCUS-EOR has attracted
extensive attention because it can achieve the
dual objectives of improving oil recovery and
reducing carbon emissions. Accurately predicting
the development performance of CCUS-EOR,
and thereby supporting the rational design of field
injection—production schemes, remains a core
research problem in this domain. Since the 1970s,
numerical simulation methods—owing to their
strong mechanism-based description capability
and broad adaptability—have gradually become
the primary technical tool in CCUS-EOR research
and practice .. Over decades of development,
three major numerical simulation frameworks
have been established for CCUS-EOR: the
improved black-oil (pseudo-compositional) model,
the K-value model, and the fully compositional
model. These approaches differ in physical fidel-
ity, computational complexity, and application
scope, and each has played an important role at
different stages of technological evolution.

Early numerical simulations were largely

built upon the conventional black-oil framework,

which cannot directly represent the complex
phase behavior between CO: and crude oil.
In 1972, Todd and Longstaff proposed an
improved black-oil model (also referred to as a
pseudo-compositional model) . The basic idea is
to introduce “solvent” as a new pseudo-component
into the traditional three-phase black-oil model,
so that oil, water, dissolved gas, and injected gas
are treated as four components, with separate mass
conservation equations formulated and solved for
each. In 2020, Sandve ¥ proposed an extended
black-oil model in which black-oil properties
such as density and viscosity within each grid cell
dynamically vary with the CO: fraction; black-oil
functions are calibrated against experimental data,
enabling predictions that are closer to those of
fully compositional simulations . This approach
retains the advantages of the black-oil model,
including high computational efficiency and a
relatively simple structure. However, the definition
of pseudo-components is still largely dependent
on empirical approximations, making it difficult to
faithfully capture CO--induced dissolution, extrac-
tion, and swelling effects under high-pressure and
high-temperature conditions. Moreover, the model
does not fully describe the continuous evolution
of phase behavior across miscible and immiscible
regimes, which can lead to substantial deviations
when predicting displacement performance in

complex reservoir settings.

As research progressed, scholars recognized
that relying solely on pseudo-component approx-
imations was no longer sufficient to accurately
represent the complex phase behavior during dis-
placement. Consequently, the K-value model was
proposed and widely applied ', This approach
determines gas—liquid equilibrium constants
using empirical correlations or semi-empirical
formulations, thereby describing the partitioning

of multiple components between two phases.
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Under immiscible conditions, the K-value model
can reasonably capture the limited dissolution
and mass-transfer processes between CO2 and
hydrocarbons. As a result, it was extensively used
in the 1980s and 1990s to simulate immiscible
CCUS-EOR """ ts key advantages include
relatively low computational cost, ease of imple-
mentation, and strong engineering adaptability
through integration with the traditional black-oil
framework "), However, the applicability of the
K-value model under miscible flooding conditions
is clearly limited. When reservoir pressure
exceeds the minimum miscibility pressure (MMP),
complex multicomponent mass transfer and
phase evolution occur between the oil and gas
phases, which cannot be adequately reproduced
by K-value approximations based purely on
empirical expressions, resulting in a substantial
loss of simulation accuracy. Therefore, although
the K-value approach has played an important role
in immiscible-flooding simulations, its accuracy
bottleneck has gradually driven researchers toward
fully compositional modeling.

To address the limitations of the aforemen-
tioned models, fully compositional models have
increasingly become the mainstream approach
for CCUS-EOR simulation. The EOS-based
compositional model proposed by Coats in 1980
) established the theoretical foundation for
subsequent commercial reservoir simulators such
as ECLIPSE Compositional and CMG-GEM.
These methods rely on equations of state (EOS),
including the Peng—Robinson and Soave—Redlich—
Kwong equations, to perform phase-behavior
calculations for each component, enabling accu-
rate determination of vapor—liquid equilibrium
constants and simulation of the dynamic evolution
of multicomponent phase behavior. The primary
advantage of fully compositional models lies

in their ability to comprehensively capture the
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complex interactions between CO: and crude
(15]

oil "', including dissolution, extraction, and
swelling mechanisms, as well as the associated
effects such as viscosity reduction and interfacial
tension lowering !"'""*1 Nevertheless, these
models also present non-negligible limitations.
First, their computational cost is high: in large-
scale three-dimensional geological models, EOS
iterations must be performed for every grid cell,
and a single simulation often requires hours or
even days. Second, during history matching,
hundreds to thousands of simulation runs may be
needed, causing the overall computational burden
to increase dramatically and severely constraining
their use in rapid prediction and optimization
workflows """, In addition, constructing high-res-
olution 3D models itself requires substantial
manpower and multi-source data, making the
overall cost extremely high. More importantly,
the large number of model degrees of freedom
leads to pronounced non-uniqueness in parameter
inversion, further increasing the uncertainty of

predictive outcomes.

2.2 Progress in Dimension-Reduction Methods
for CCUS-EOR

To address the practical bottlenecks of fully
compositional models—particularly the heavy
computational burden and the high iterative cost of
history matching in high-resolution 3D geological
models—researchers worldwide have proposed
a series of acceleration strategies with clear
engineering value, without altering the funda-
mental conservation laws and governing physical
equations. In general, these strategies follow three
logically distinct yet complementary technical
routes: (i) multiscale methods from the perspective
of spatial discretization; (ii) streamline-based
methods leveraging flow-dynamics characteristics;

and (iii) reduced-order methods centered on state-
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space rank reduction.

2.2.1 Multiscale methods

The core idea of multiscale methods is to con-
struct multiscale basis functions that can “carry”
fine-scale heterogeneity information onto coarse-
grid scales. In doing so, the global solution of the
pressure—velocity field is shifted to the large scale,
while the influence of fine-scale geological textures
is embedded into the coarse-scale solution through
basis-function corrections. This philosophy differs
from simple homogenization/equivalent-parameter
upscaling and also from blind coarsening. By
using numerical operators to incorporate fine-scale
information into the global solution in a structured
manner, multiscale methods can significantly
reduce the degrees of freedom and solution cost
while preserving dominant heterogeneity effects.
Representative approaches include the multiscale
finite element method proposed by Hou and Wu,
which constructs basis functions by solving local
elliptic subproblems and demonstrates numerical

29 The multiscale

stability and convergence
finite volume method developed by Jenny, Lee,
and Tchelepi, by contrast, aligns more closely
with industrial reservoir simulators in terms of

control-volume partitioning and flux-conservation

(b)

implementation ",

Compared with conventional coarse-grid
upscaling, a key advantage of multiscale methods
is that they do not simply average fine-scale
parameters. Instead, fine-scale impacts participate
in the global solution through “correction—
restriction” operators. As a result, these methods
can still maintain reliable descriptions of pressure
propagation and velocity distribution in settings
characterized by strong interlayer contrasts
and permeability spanning several orders of
magnitude, especially near-well regions. In 2018,

1.1 constructed a cross-scale model

Torres et a
in the Bakken tight oil reservoir to elucidate the
interplay between CO:-enhanced oil recovery and
storage mechanisms. In 2024, Li et al. ** devel-
oped a multiscale framework for oil-water and
gas-flooding simulations, quantitatively analyzing
the impact of multiscale heterogeneity on displace-
ment efficiency. In 2025, Peng et al. **' employed
coupled pore-network and reservoir-scale
multiscale simulation to reveal the mechanisms of

CO: foam flooding in low-permeability reservoirs.

For CCUS-EOR scenarios involving
strong phase-behavior coupling, pronounced

capillary-pressure effects, or non-Darcy flow,

(c)

Fig. 2 Primal and dual coarse grids generated for a 40 x 30 x 31 realization of the single-fault model. The plot in (a)
shows the ‘inner’ cells (blue), the “face’ cells (white), the ‘edge’ cells (red), and the primal coarse grid (thick line) for a
subset of the whole model. Plot (b) shows the different blocks in the primal 4 x 3 x 3 coarse grid colored in different trans-
parent colors to show the edge’ cells inside, colored in blue. Plot (c) shows a side-view of the same plot, in which the ‘edge’
cells have been given a different color for each primal block .
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retaining a traditional “pressure—saturation se-
quential” coupling framework may still introduce
non-negligible errors in approximating phase be-
havior and mass-transfer terms within multiscale
formulations. Therefore, in engineering practice,
multiscale solvers are often combined with
adaptive mesh refinement, local near-well fine
grids, or hybrid grids (e.g., unstructured or nested
meshes) “*. This strategy maintains high fidelity
in critical regions while allowing coarsening in
less sensitive areas, achieving a practical balance
between accuracy and efficiency. From the stand-
point of time discretization, multiscale methods
are also frequently paired with implicit-pressure/
explicit-saturation schemes or fully implicit
solvers to stably handle high compressibility and
strongly coupled source terms. Across multiple
comparative studies, such combined strategies
can often deliver one to two orders of magnitude
speedup relative to “full fine-grid—fully implicit”
baselines, while keeping the influence on full-
field pressure distribution and macroscopic sweep
within acceptable engineering limits.

2.2.2 Streamline methods

Streamline methods are built on instantaneous
velocity fields and transform 3D, convection-dom-
inated multiphase flow problems into 1D transport
problems along streamlines in a Lagrangian
coordinate system. This mapping decomposes a
high-dimensional convection—diffusion problem
into a series of 1D transport equations that can be
solved in parallel, markedly reducing numerical
dissipation and dispersion during time marching.
Thiele et al. *”' proposed a streamline-based
history-matching strategy that adjusts parameters
such as interwell connectivity and relative
permeability, enabling simulated production
to approach observed data under constraints

of “streamline time of flight” and “volumetric
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allocation,” thus achieving multi-well history
matching with reduced full-field reassembly cost.
(28]

Datta-Gupta and King ' provided a systematic
exposition of streamline theory and engineering
implementation, highlighting that in waterflooding
and gas-flooding problems with clear injection—
production relationships and dominant macro-
scopic convection, streamline simulation offers
clear advantages over full-field finite-difference or
finite-volume methods in computational efficiency

and parameter-sensitivity analysis'”.

In CCUS-EOR applications, the advan-
tages of streamline methods can be particularly
pronounced. In 2022, Islam and Woobaidullah
performed integrated CO: storage and EOR
assessments by combining streamline analysis
with compositional simulation ®°. In 2025,
Zhang et al. ®'"! proposed a three-phase streamline
history-matching method that significantly im-
proved field-data matching efficiency. Streamline
approaches typically produce lower numerical
dispersion when describing displacement fronts,
viscous fingering, and gravity override—phenom-
ena characterized by “strong convection—weak
diffusion.” This makes them well suited for rapid
screening of multiple development scenarios,
sensitivity analyses of injection—production
strategies, and Monte Carlo evaluations across
multiple geological realizations.

However, when phase behavior and source
terms (e.g., viscosity and density variations
induced by dissolution and extraction) are strongly
coupled, the instantaneous velocity field and
phase-state parameters require more frequent
iterative updates, which can partially offset the
computational advantages of streamline methods.
To mitigate this issue, engineering practice often
introduces relaxed iterations between pressure up-
dates and streamline reconstruction, and increases

the reconstruction frequency during critical time
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periods to achieve a controlled trade-off between

accuracy and efficiency”.

2.2.3 Reduced-order methods

Reduced-order models (ROMs) focus on
state-space compression. Methods such as princi-
pal component analysis and singular value decom-
position are used to construct low-dimensional
subspaces from “training snapshots.” The original
high-dimensional state is then projected onto this
subspace for evolution, and physical fields are
recovered through reconstruction mappings "',
Chen and Durlofsky systematically discussed the
construction, stability, and error sources of sub-
surface-flow ROMs, proposing techniques such as
selective snapshot selection, blockwise reduction,
and adaptive updating to alleviate “out-of-sample
drift,” thereby maintaining engineering usability
under complex heterogeneity °*. The linearized
ROM proposed by Cardoso and Durlofsky adopts
a methodological structure of “linear approxi-
mation—projected evolution—error correction,”
enabling effective dimensionality reduction for
coupled pressure—saturation systems, and thus
demonstrating clear computational advantages
in parameter-sensitivity analyses and repeated

. . . 35
simulation scenarios L ].

Compared with multiscale and streamline
methods, ROM places greater emphasis on
dimensionality reduction at the operator level.
Theoretically, this enables ROM to interface with
solvers using arbitrary grid structures and bound-
ary conditions. From an engineering standpoint,
ROM can be embedded as a “fast prediction
kernel” into the outer loops of history matching
and optimization, thereby substantially shortening
the wall-clock time of the iterative “simulate—
evaluate—re-simulate” cycle. It should be noted,
however, that the effectiveness of ROM is highly

dependent on the representativeness of training

samples and the availability of robust online
calibration mechanisms. When the displacement
process involves phase-regime switching, strong
nonlinear transitions, or significant changes in well
patterns and control parameters, a static subspace
may fail to cover the true evolution trajectory. In
such cases, model accuracy must be maintained
through incremental snapshots, local-subspace

. . .. . 36
stitching, or error-aware retraining strategies "°.

In the context of CCUS-EOR, ROM is often
combined in practice with tabulated treatments
of EOS-based compositional calculations and
surrogate approximations of key phase-behavior
parameters. This hybrid strategy reduces the per-
step cost of phase-equilibrium iterations without
sacrificing critical phase-transition windows,
leading to a notable reduction in overall runtime.
In 2022, Zhao et al. 7 explored the feasibility
of CCUS-EOR in low-pressure reservoirs by
integrating EOS simulations with surrogate
approximations. In 2025, Ma et al. compared
multiple ROM approaches and systematically
evaluated their predictive accuracy in CO:

enhanced oil recovery (CO.-EOR) scenarios "),

3 Progress in Data-Driven Methods for
CCUS-EOR

3.1 Progress in Machine-Learning-Based
Approaches for CCUS-EOR

With the continuous accumulation of
reservoir production-dynamics data and the rapid
development of computational intelligence,
purely data-driven approaches based on machine
learning and deep learning have increasingly
become an important research direction for
numerical simulation and optimization of CCUS-
EOR. Unlike traditional physics-based modeling
methods, purely data-driven approaches typically
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do not rely on explicit governing equations.
Instead, they learn input—output mappings directly
from large-scale historical data. Such methods can
substantially reduce dependence on geological
modeling and numerical discretization, and offer

clear advantages in predictive efficiency .

As one of the earliest classes of tools
introduced into CCUS-EOR prediction and optimi-
zation, traditional machine-learning methods have
played a significant role. These methods include
support vector machines (Support Vector Machine,
SVM), random forests (Random Forest, RF),
and gradient-boosting models (Extreme Gradient
Boosting, XGBoost). Owing to their relatively
simple structures, stronger interpretability, and ef-
ficient training, they have been explored in various
CO:-EOR scenarios “". In 2016, Hosseinzadeh
Helaleh and Alizadeh employed SVM combined
with three optimization algorithms—ant colony
optimization, particle swarm optimization, and

genetic algorithms—to predict recovery factor ",

In recent years, XGBoost has been
frequently adopted in CCUS-EOR and CO.-WAG
scenarios, often in combination with surrogate
and optimization algorithms to improve prediction
and decision-making efficiency. In 2023, Gao
et al. proposed an XGBoost-PSO workflow. By
generating 10,000 samples with varying geological
and operational parameters, they trained the model
to predict CO2-WAG production and optimize
injection parameters ¥, Thanh et al. Y compared
multiple machine-learning models in CO2-foam
flooding and demonstrated the superiority of
XGBoost in recovery prediction. Nevertheless,
XGBoost typically entails relatively high training
and tuning costs and exhibits strong sensitivity to

hyperparameters.

Shen et al. developed a new CO2-EOR

potential-evaluation method based on a
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BO-LightGBM framework. Through feature
fusion and importance ranking, they established a
nonlinear mapping between reservoir parameters
and development potential **). This method
not only improved predictive accuracy but also
provided an efficient tool for rapidly screening
blocks suitable for CO2-EOR implementation.

Lv et al. “®

modeled the minimum miscibility
pressure (Minimum Miscibility Pressure, MMP)
of CO:—crude oil systems using deep learning and
tree-based models, and integrated thermodynamic
models to achieve accurate MMP prediction.
Esfand et al. " constructed surrogate models
using various machine-learning algorithms to
capture the relationship between well-placement
design and reservoir heterogeneity in CO2-EOR.
Their results suggest that the proposed models
can effectively identify sensitivity features of
well-pattern optimization to production dynamics,
thereby providing quantitative references for well
deployment and development-scheme design.

3.2 Progress in Deep-Learning-Based
Approaches for CCUS-EOR

In practical CO: enhanced oil recovery (CO--
EOR) applications, the rapid growth of monitoring
data, numerical-simulation outputs, and experi-
mental datasets has increasingly positioned deep
learning (Deep Learning, DL) as an important tool
in CO2-EOR research. Compared with traditional
machine-learning models, deep learning offers
stronger nonlinear representation and automatic
feature-extraction capabilities, enabling end-to-
end modeling under spatiotemporal coupling, non-
linear boundary conditions, and high-dimensional
complex inputs. As a result, DL has demonstrated
distinctive advantages in rapid prediction, his-
tory matching, optimal control, and uncertainty
analysis for CCUS-EOR problems #1430,

At present, deep-learning-based surrogate models
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exhibit diverse application scopes and strengths
in CCUS-EOR, and a multi-path development
landscape is gradually taking shape.

3.2.1 Convolutional neural networks
Convolutional neural networks (Convolu-
tional Neural Networks, CNN) are well suited for
processing images and structured grid data owing
to their local receptive fields and weight-sharing
mechanisms. They have therefore been introduced
into reservoir modeling to extract spatial features
associated with reservoir heterogeneity. In CCUS-
EOR applications, CNNs are commonly used
to predict oil and gas production under different
injection—production settings, as well as the distri-
bution of CO: plumes "*. Kim et al. ™' construct-
ed surrogate models using CNNs with average
pooling and fully connected (Fully Connected,
FC) layers, and demonstrated the effectiveness of
deep CNNs in selecting well locations and well
types, thereby broadening the application scope of

Matrix
Multiplication

neural networks in petroleum development. Meng
et al. ® developed a deep-learning surrogate
based on a Res-U-Net architecture, organizing
multi-source inputs—including porosity, permea-
bility, well locations, and control conditions—into
“image-like” tensors. Through multi-scale feature
extraction and skip-connection fusion within an
encoder—decoder structure, the model achieved
end-to-end rapid prediction of state variables such
as pressure and saturation fields. These results
indicate that CNNs can substantially reduce de-
pendence on high-fidelity full-physics simulations,
making them suitable for rapid scenario screening

and sensitivity analysis.

In 2024, Yan et al. ** proposed a CNN-based
surrogate for forecasting field production dynam-
ics and performing history matching. By using
Latin hypercube sampling and the MATLAB
Reservoir Simulation Toolbox to generate diverse
discrete-fracture model samples, they employed
six input channels to comprehensively characterize

| Concatenation
—_—

‘ Scaled Dot-Product Attention }Zh

Matrix
Multiplication

; Linear J ( Linear ] [ Linear ]

\% K Q
(a) (®)

\% K Q
©

Fig. 3 (a) CNN-Transformer architecture. The static geological and time-varying engineering parameters are encoded to
the latent space by the CNN encoder and MLP, respectively. Transformers are then applied to process the latent sequence,
followed by the CNN decoder to generate predictions at all time steps simultaneously. Skip connections are used to enhance
information flow between the encoder and decoder. The numbers at the corner of each convolutional block denote the chan-
nel. (b) Details of the convolutional blocks in the CNN encoder. (c) Details of the ResNet blocks in the CNN decoder”™.
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reservoir and fracture attributes, and used oil and
water production as the training and validation tar-
gets. The results showed that this CNN surrogate
achieved up to 99% accuracy in predicting oil and
water production. Moreover, when combined with
a genetic-algorithm-based intelligent optimization
strategy, the CNN surrogate exhibited higher effi-
ciency and stability in automated history matching

compared with conventional approaches.

Mo et al. " employed dense blocks to
construct a model for simulating the evolution of
subsurface CO: storage. Their approach encodes
input permeability to generate a series of feature
maps, concatenates time with these maps, and
then decodes them to produce pressure and
saturation distributions. Although a segmentation
loss was introduced to address discontinuities at
saturation fronts, the model is primarily effective
for interpolation within the training-time window,
while its extrapolation performance beyond that
window remains limited. Han et al. ®” proposed
a recurrent R-U-Net (Recurrent R-U-Net), which
integrates temporal recurrent units into the U-Net
backbone for spatial feature extraction, thereby
capturing time dependence during injection—
production evolution and enabling history
matching within a hierarchical Markov chain
Monte Carlo framework. Building on CNN
and temporal-network architectures, Xu et al.
introduced a multi-head attention module to more
accurately represent complex interwell dynamics
and long-term dependency features during CO:-
WAG development P,

3.2.2 Recurrent neural networks

Recurrent neural networks (RNN) and their
variants—such as long short-term memory (Long
Short-Term Memory, LSTM)—have been widely
used in recent years for production-dynamics

prediction and history matching in CO2-EOR,
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owing to their strengths in time-series modeling"”.

Through recursive state propagation, RNN
architectures can capture temporal fluctuations
in injection—production strategies and operating
conditions, and are sensitive to long-term
dependencies embedded in reservoir pressure,
injection rates, and production profiles. Utomo

91 ytilized

Pratama Iskandar and Kurihara
LSTM to predict time-varying oil, water, and
gas production for existing wells, demonstrating
improved generalizability and predictive stability
over traditional machine-learning models across

1. ® ysed

multiple well patterns. Ruijie Huang et a
up to 15 years of production data to develop an
LSTM model for predicting oil production, gas—oil
ratio, and water cut, and compared the results with
numerical simulations, highlighting the efficiency
of LSTM in handling real operational changes and

interwell connectivity characteristics.

Davoodi et al. Y applied LSTM models
to a five-spot CO2-EOR system to predict CO:
storage capacity and oil recovery. Their results
indicated that under complex spatial distributions
and time-varying conditions, LSTM achieved
markedly higher prediction accuracy than baseline
models, while substantially reducing the time
required for training and inference. Feng et al. ®”
proposed an encoder—decoder-based ConvLSTM
surrogate for rapidly predicting the evolution
of pressure and saturation under dynamic CO:
injection scenarios. Despite these successes,
RNN/LSTM approaches still face limitations,
such as vanishing or exploding gradients in
ultra-long sequences. When injection—production
strategies change frequently or data sampling
intervals are inconsistent, additional architectural

. . 66
enhancements—such as attention mechanisms °“,

segmented training strategies

[62]

, or sliding-win-
dow formulations "“—are often required to ensure

training stability and predictive accuracy.
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3.2.3 Graph neural networks

In recent years, graph neural networks (GNNs)
have developed rapidly in the oil and gas engi-
neering domain . Their core advantage lies in
their natural compatibility with unstructured grids,
complex well-network connectivity, and irregular
geological configurations. By directly leveraging
graph-structured data to model reservoirs, GNNs
can overcome the limitations of conventional
CNNs that rely heavily on regular grids . In
CCUS-EOR, strong reservoir heterogeneity and
complex inter-well connectivity often make it
difficult for traditional methods to simultaneously
achieve high efficiency and accuracy. The intro-
duction of GNNs therefore provides a new and
promising pathway to address this challenge.

Huang et al. "

proposed an improved
GNN that employs attention mechanisms to
invert the dynamic layer-by-layer connectivity
between injection and production wells. Du et
al. ' combined a graph convolutional network
(Graph Convolutional Network, GCN) with gated
recurrent units to compute daily oil production.
In this framework, the GCN is used to quantify
inter-well connectivity, while the gated recurrent
unit extracts well features and outputs production
information. As a result, when computing the re-
sponse of a target well, wells that are not actually
connected to the target may still be involved in

GraphSage
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. Injection temperature
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the calculation. In 2025, Li et al. " developed a
heterogeneous spatiotemporal fusion model inte-
grating relational graph convolution, Transformer,
and LSTM for dynamic prediction of water cut
between injectors and producers in waterflooding.
They further introduced a hybrid optimization
framework that combines genetic algorithms
with multi-objective particle swarm optimization,
enabling closed-loop prediction—optimization
control. Numerical experiments demonstrated that
this approach can effectively improve net present

value while maintaining predictive accuracy.

Jiang proposed a GCN-based multiphase-flow
simulation framework capable of efficiently
solving pressure and saturation distributions
on unstructured grids. The results indicate
that the GCN model can substantially reduce
computational cost while maintaining accuracy
comparable to that of finite-volume methods,
validating the feasibility and reliability of GNNs
in reservoir numerical simulation . Gudalad
and Yan et al. "' introduced a novel GNN-based
deep-learning framework to accelerate simulations
of fractured geothermal reservoirs. By encoding
node and edge features, the GNN systematically
represents the influence of fracture networks on
fluid flow, heat transport, and geomechanical
behavior, and predicts the dynamic response of

complex geothermal systems under injection—
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production operations. Although this work focuses
on geothermal systems, its findings offer valuable
insights for understanding multi-physics processes
in fractured reservoirs subjected to CCUS-EOR.

In 2024, Ju et al. "”! combined graph
convolution with LSTM to develop a graph
convolutional long short-term memory network
that effectively captures the spatiotemporal
migration of CO: plumes in faulted reservoirs. The
model maintained high accuracy under various
fault geometries while substantially reducing
computational cost, with single-run inference time
reportedly around one percent of that required
by conventional simulations. In 2025, Zhuang et
al. ! constructed a GNN-Transformer surrogate
to predict CCUS-EOR dynamics and storage
capacity, and integrated a multi-objective particle
swarm optimization algorithm to adjust well
placement and controls for maximizing both oil
production and storage. Tariq et al. " proposed
an enhanced GCN based on a U-Net backbone
for rapid prediction of saturation and pressure
evolution of CO: plumes in saline aquifers.
Compared with traditional numerical simulation,
this approach significantly reduced computational
cost while achieving near-physics-level accuracy
across multiple test scenarios.

Overall, GNNs have demonstrated clear ad-
vantages in reservoir simulation and CCUS-EOR
studies. They can represent complex unstructured
grids and well-network topologies, achieving
high predictive accuracy with markedly reduced
computational overhead. Current research has
primarily focused on plume-migration prediction,
connectivity analysis in faulted reservoirs, and
fast surrogate computation of pressure—saturation
fields. Nevertheless, it should be noted that much
of the existing work remains at the numerical-ex-

periment stage. The adaptability to field-scale
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dynamic data, model generalization capability,
and deeper integration with physics-constrained
approaches still require further investigation.

3.2.4 Fourier Neural Operator

The Fourier Neural Operator (FNO) is an
efficient framework for solving partial differential
equations (PDEs) popularized by Caltech .
The method first transforms input features into
the frequency domain via a Fourier transform,
evolves the representations in the spectral space,
and then applies an inverse Fourier transform
to obtain updated features. In 2022, Zhang et al.
7l applied FNO to solve two-dimensional oil—
water two-phase flow PDEs. By introducing the
fast Fourier transform to extract PDE information
and incorporating physical constraints, their
method efficiently predicted the evolution of
saturation and pressure. It demonstrated excellent
accuracy and generalization in both forward and
inverse problems, highlighting its potential as an

alternative to traditional numerical simulation.

Also in 2022, Chu et al. """ addressed the high
computational cost of CO: storage simulation in
shale—sandstone composite reservoirs by propos-
ing a deep-learning-based RU-FNO architecture to
predict CO: plume migration and pressure buildup
under complex reservoir conditions. The method
reportedly achieved more than an 8000 speedup
over conventional numerical simulation for
saturation and pressure prediction, with improved
accuracy, making it particularly suitable for in-
vestigating CO: migration governed by thin shale
layers. In 2023, Liu et al. " developed a 4D (x,
y, z, t) flow simulation framework that combines
FNO with domain decomposition, successfully
extending FNO from conventional 3D spatiotem-
poral settings to a four-dimensional space—time
domain. This framework trains multiple 3D FNO

networks in parallel and couples them in the z
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direction, enabling efficient simulation of complex
flows in fractured reservoirs within CCUS-EOR
compositional models.

In 2024, Yang et al. " proposed an FNO-
based surrogate model for CCUS-EOR in
three-dimensional heterogeneous reservoirs to
enable rapid prediction of reservoir-property
distributions. The study showed that the model can
accurately capture key displacement features in
CCUS-EOR, including front propagation, gravita-
tional effects, and crossflow. Compared with con-
ventional compositional simulation, the approach
achieved an approximately 360x improvement in
computational efficiency, demonstrating strong po-
tential for rapid well-placement optimization and
parameter inversion in CCUS-EOR projects. In
2025, Liu et al. ™ proposed a DL-NRS framework
that integrates FNO with low-resolution numerical
simulation results to reconstruct high-resolution
pressure and saturation evolution. By introducing
physics-constrained loss functions and leveraging
low-resolution simulation data for up sampling
and training, the framework produced results
close to high-resolution numerical solutions. The
reported average relative errors for both pressure
and saturation were below 1%, with a substantial
reduction in computational cost, indicating strong
applicability to rapid dynamic prediction for large-

scale reservoirs.

3.2.5 Large Language Models

Large language models (LLMs) typically
refer to models built upon Transformer backbones.
Owing to their advantages in long-sequence mod-
eling and adaptive feature learning, Transformer
architectures have increasingly entered the field
of reservoir engineering modeling and prediction.
Compared with RNN/LSTM, Transformers
employ multi-head self-attention (Multi-head
self-attention, MSA) to effectively model long-

range dependencies, mitigate vanishing-gradient
issues, and deliver improved performance in
multi-scale dynamic forecasting. In CCUS-EOR
research, the introduction of Transformers has
provided new methodological support for history
matching, production forecasting, and identifica-
tion of gas-channeling pathways.

In 2023, Zhang et al. ®*" proposed a Trans-
former-based surrogate to address the limited
parallelism and high training overhead of tradi-
tional RNN approaches for reservoir production
prediction. Through multi-head self-attention, the
model effectively captured complex dependencies
between input features—such as water-injection
rates, drilling decisions, well locations, porosity,
and permeability—and production responses™”.
A sequence-to-sequence structure further enabled
long-horizon extrapolation. The results showed
that incorporating additional information such as
drilling and well locations significantly improved
prediction accuracy, yielding more reliable

performance than models that rely solely on
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injection-rate inputs. Meanwhile, compared with
RNN baselines, the Transformer achieved roughly
a fourfold speedup while maintaining similar
predictive accuracy.

In 2024, Jia et al. ™ explored a new applica-
tion of Transformers for production forecasting
by proposing a Transformer-based deep neural
network to predict productivity after refracturing
operations. The method effectively captured
nonlinearities and long-range dependencies
in production curves, substantially improving
prediction accuracy and offering new insights
for performance evaluation in unconventional
reservoirs. In 2025, Liu et al. " further proposed
an automated history-matching framework that
integrates GNNs, Transformers, and optimization
algorithms. By enhancing inter-well connectivity
representations with attention mechanisms and
combining intelligent optimization to invert
injection—production relationships, the framework
achieved improved matching accuracy and
stability in complex injection—production systems,
providing technical support for closed-loop
control.

Also in 2025, Feng et al. ** developed a
CNN-Transformer hybrid surrogate that combines
the local feature-extraction capability of convolu-
tional networks with the global temporal modeling
strength of Transformers for multi-objective
robust optimization in geological carbon storage.
The results indicated stronger robustness and
generalization under complex reservoir conditions.

Xiao et al.

proposed a unified deep-learning
framework that fuses static geological parameters
with dynamic production data and enhances tem-
poral-dependency modeling via Transformers, en-
abling joint prediction of CO.-EOR performance
and carbon storage capacity. The results showed
clear accuracy improvements over conventional

data-driven models, while providing high-con-
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fidence assessments of both static and dynamic
performance. Li et al. * offered a representative
example of a graph-attention plus self-attention
spatiotemporal fusion model. In fractured—vuggy
carbonate reservoirs characterized by complex
geological connectivity, nonstationary data, and
strong well-pattern interactions, the method
demonstrated superior predictive performance

compared with traditional time-series models.

4 Progress in Data—Physics Coupled
Methods for CCUS

In mechanistic studies and engineering
practice of reservoir development, improving
computational efficiency while preserving physical
consistency has long been a central challenge for
CCUS-EOR simulation and history matching.
Conventional full-physics compositional
simulators can comprehensively capture complex
mechanisms such as pressure propagation,
phase-behavior evolution, and the formation
of gas-channeling pathways. However, their
computational cost is prohibitive. This limitation
is particularly pronounced in high-resolution
three-dimensional geological models, where such
simulators often cannot support the hundreds
or even thousands of runs required for history
matching and optimization. In contrast, purely
data-driven methods offer clear advantages in
computational speed, yet their lack of essential
physical constraints commonly leads to biased
predictions when extrapolating to unseen operat-
ing conditions or complex phase-regime scenarios,
falling short of the reliability demands of field
applications.

Against this backdrop, a series of data—
physics coupled approaches has been proposed
in recent years to reconcile “physical-mechanism

fidelity” with “data-driven efficiency.” The central
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idea is twofold: on the one hand, to introduce
physical priors or constraints to varying degrees
so as to reduce the effective freedom of purely
data-based models under complex reservoir
conditions, thereby enhancing predictive accuracy
and extrapolation capability; on the other hand,
to leverage data-driven techniques to accelerate
or compensate for traditional numerical models,
alleviating their high computational burden.

Broadly, data—physics coupled methods
can be categorized into the following types:
(1) Analytical or semi-analytical models based
on simplified governing equations and data
fitting, with representative examples including
the Capacitance Resistance Model (CRM) and
the Inter-well Simulation Model (INSIM). By
simplifying physical control equations and
performing parameter inversion using production
data, these models have been widely used for rapid
history matching and quantitative characterization
of inter-well connectivity. (2) Physics-constrained
deep-learning methods, typified by Physics-In-
formed Neural Networks (PINNs), which directly
embed PDE residuals into loss functions to enable
end-to-end prediction of pressure fields, saturation

evolution, and component transport.

4.1 Simplified Physics-Based Approaches

In the evolution of data—physics coupled
methods, one of the earliest lines of research
focused on introducing production-dynamics
data into frameworks with simplified governing
equations for parameter inversion. This idea was
first proposed by Albertoni et al. *”' and Yousef et
al. ™. The Capacitance Resistance Model (CRM)
conceptualizes a reservoir as a flow-network
system composed of connectivity units between
injectors and producers. Along each connectivity
pathway, CRM solves simplified flow equations

associated with pressure and saturation, while

wellhead allocation is determined using empirical
relations. With a relatively low computational
burden, CRM can rapidly reflect inter-well
connectivity and has therefore been widely applied
to dynamic matching and connectivity analysis in

multi-well systems.

However, the physical simplifications adopted
by CRM also impose clear limitations. First,
the productivity index and allocation (splitting)
coefficients are typically assumed to be constant
throughout the simulation, making it difficult to
represent dynamic adjustments caused by changes
in field injection—production strategies or wellbore
operating conditions. Second, the fractional-flow
formulation used to compute phase rates is derived
mainly from empirical correlations rather than
rigorous physics-based descriptions. Third, con-
strained by its analytical formulation, CRM cannot
directly impose bottom-hole pressure (BHP) control

in prediction and optimization workflows *.

In subsequent developments, researchers
have attempted to extend CRM to CO--EOR and
carbon-storage scenarios. In 2008, Sayarpour inte-
grated CRM with an allocation model to establish
a history-matching and performance-prediction
tool applicable to both waterflooding and CCUS-
EOR, and validated the approach using multiple
field cases™. The results indicated that, as a light-
weight surrogate model, CRM can substantially
reduce computational cost in history matching
and optimization, while also supporting reservoir
uncertainty quantification and performance
evaluation. In 2012, Nguyen et al. " proposed
the Integrated Capacitance Resistance Model
and validated it in an Omani oilfield as well as in
multiple synthetic CCUS-EOR cases. In 2016,

1. ¥ introduced the Gentil fraction-

Eshraghi et a
al-flow formulation into the CRM framework and,
combined with heuristic intelligent optimization

algorithms, developed an optimization approach
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suitable for miscible CCUS-EOR.

In 2014, Zhao Hui et al. ) proposed
a simplified representation of injection—
production systems and developed an inter-well
connectivity model based on dynamic injection—
production data. Through dynamic matching,
this method enables rapid inversion of inter-well
formation parameters while capturing connectivity
relationships. Building on this work, Zhao et al.
(2015) P proposed the INSIM framework that
couples physics-based modeling with data-driven
strategies, enabling efficient prediction of two-
phase oil-water flow *\. In 2016, Zhao et al.
incorporated aquifer effects into the model and
explored its potential for production optimization.
In the same year, they proposed a layered con-
nectivity analysis approach and further developed
an inter-well connectivity inversion model for

multilayer waterflooding reservoirs 7.

Regarding broader applications, Guo et al.
(2018) " developed the INSIM-FT model, in
which a front-tracking approach was used to
improve saturation computations based on the
Buckley—Leverett equation, thereby enhancing
water-cut prediction accuracy and enabling
production-optimization studies “”'. In 2019,
Zhao et al. proposed a rapid evaluation method
for injector efficiency and fast optimization of
injection—production strategies within the INSIM
framework """, In the same year, Guo incorporat-
ed gravity effects and developed a corresponding
three-dimensional extension "*"". Further advances
include the INSIM-FPT model proposed by
Zhao et al. (2020) "', which integrates node
densification and path-tracking algorithms to
compute key parameters such as inter-well flow
paths and allocation coefficients. In 2021, Liu

et al, 1'%

proposed a rapid injection—production
rate-optimization method for oil and water wells

based on oil-saturation evaluation. Zhao et al.
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further expanded model capabilities by developing
the INSIM-FPT-3D model with gravity effects and
introducing a new well-index formulation to im-
prove BHP calculation accuracy "*. Meanwhile,
Liu et al. (2021) also employed these models for
dynamic prediction of profile-control and plugging
treatments, demonstrating that the approach
can effectively forecast post-treatment reservoir

behavior and guide optimization design "',

Despite the demonstrated efficiency and
practical value of INSIM and its variants in
rapid dynamic prediction, history matching,
and production optimization, several limitations
remain. First, the basic INSIM framework was
originally designed for two-phase oil-water
displacement. Although later extensions have been
made to polymer flooding and three-dimensional
settings, the model still struggles to fully capture
key mechanisms in CCUS-EOR scenarios with
pronounced phase-behavior complexity, such
as dissolution, extraction, swelling, and gas
channeling. Second, while improvements such
as front tracking and path tracing have enhanced
performance, the underlying physical approxima-
tion remains largely rooted in Buckley—Leverett
theory. This can lead to non-negligible deviations
in representing capillarity, gravity, and strongly
nonlinear displacement conditions.

The limitations of CRM and INSIM
have motivated the development of numerical
flow-network models "*. In such models """ the
one-dimensional inter-well connectivity pathways
are discretized, and the governing equations are
solved numerically. Compared with CRM or
INSIM, numerical flow-network models offer
greater flexibility. For example, owing to the
discretized formulation, each well can be assigned
an independent well grid, which allows the direct
use of conventional well models for bottom-hole

pressure (BHP) calculations. This feature enables
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the model to incorporate BHP data during history
matching and to impose BHP control during
forecasting. In addition, the mathematical frame-
work of this approach allows the introduction of
arbitrary governing equations, making it possible
to extend flow-network modeling to more complex
physical processes, such as thermal recovery or
compositional flow. This flexibility, however,
comes at the cost of increased computation. In
most cases, nevertheless, the number of grids
required by flow-network models remains far
smaller than that of full 3D geological models.

In 2018, Lutidze proposed the StellNet

17 whose key distinction from traditional

mode
flow-network models lies in the introduction of
the concept of “well cells.” Well cells refer to
reservoir grid blocks perforated by a wellbore.
Different connectivity pathways can interact
through these well cells without requiring actual
fluid entry into or exit from the wellbore. This
enhancement significantly increases the number
of potential flow paths and improves the model’s
capability to represent complex connectivity.
In this sense, the well-cell concept plays a role
similar to that of “virtual wells”.

In 2019, Ren et al. " developed GPSNet
at Chevron as a network model built on a gener-
al-purpose numerical simulator. GPSNet inherits
the essential ideas of StellNet, while using a com-
mercial simulator to evolve the network model.
Based on this platform, layered workflows were
proposed and successfully applied to reservoir
history matching and waterflooding optimization
1090 " GPSNet was subsequently extended to
GPSNet-2D, where two-dimensional connectivity
pathways were used for history matching and
optimization in steamflood reservoirs "', Wang
et al. ""” further expanded GPSNet to address
rapid decline analysis and interwell interference

in unconventional reservoirs, and introduced a

dual-grid system for coupled solutions.

Along a similar line, Kizrr et al. "™

proposed
and open-sourced FlowNet for production
prediction and optimization. Rao et al. "' further
explored how to integrate physical constraints
with data-driven methods within a more
generalized framework. A representative outcome
is the recently proposed general physics-driven
data-driven paradigm, which takes governing
equations as the core and combines data assim-
ilation with fast surrogate modeling to achieve
unified modeling and solution for reservoir
simulation and history matching. Like FlowNet,
this framework emphasizes interwell connectivity
and network-based representation, but goes further
by coupling physical equations with data-driven
algorithms. It thus reduces computational cost
while preserving physical consistency, and offers
strong generalizability and flexibility.

In 2022, Zhao et al. "' proposed a FlowNet-
based method tailored to the development
characteristics of hydraulically fractured wells in
shale gas and tight-oil reservoirs. Without relying
on complex geological modeling, the approach
constructs an inter-well connectivity network
and incorporates fracture-treatment parameters
to enable rapid history matching and production
forecasting for fractured wells. This method effec-
tively reduces the modeling cost of tight-reservoir
simulation and achieved high predictive accuracy,
demonstrating the applicability of FlowNet to un-
conventional-reservoir development. In 2024, Xu
et al. "' applied FlowNet to CO: water-alternat-
ing-gas (WAGQ) scenarios and established a rapid
history-matching and production-optimization
framework. By using network-based representa-
tions to simplify injector—producer connectivity
calculations and coupling optimization algorithms
to identify rational injection—production strategies,

the method was able to reproduce production his-
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tory in typical CO-WAG cases while significantly
reducing computational time and supporting

operational optimization.

Despite the promising potential of GPSNet
and FlowNet for rapid history matching, produc-
tion forecasting, and optimization control, several
limitations remain. Under complex network
structures or long-term iterative workflows,
convergence issues may arise, manifested as
reduced numerical stability or slower convergence
during parameter inversion. These issues can
be particularly pronounced for large-scale well
networks and long-horizon forecasts.

In 2023, Zhao Hui et al. """ further developed
the theoretical framework of the Connecting Ele-
ment Method (CEM) based on INSIM, positioning
it not only as a computational approach but also as
a physics—data-driven modeling tool. Typical test
cases verified its feasibility and extensibility for
multiscale two-phase flow simulations. Liu et al.
%) combined CEM with data-space inversion and
proposed an efficient modeling scheme oriented
toward closed-loop optimization, offering a new
pathway for history matching and production
optimization in complex reservoirs. Zhao et al.
1% applied CEM to two-phase flow simulation
in multiscale fractured reservoirs, significantly
reducing dependence on fine-grid discretization
and enabling efficient characterization of fracture—
matrix coupled flow. Subsequent work by Xu
Yunfeng et al. "> extended this line of research
to CCUS-EOR, proposing CEM-based CO-:
simulation and channeling-pathway prediction
methods. This provides a new physics—data-driven

tool for gas-channeling identification and control.

4.2 Physics-Informed-Neural-Network-Based
Surrogate Models

As a representative approach that couples

deep learning with physical constraints, phys-
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ics-informed neural networks (Physics-Informed
Neural Networks, PINNs) have been increasingly
introduced into modeling for oil and gas reservoir
development in recent years. The core idea
of PINNs is to embed the governing partial
differential equations (PDEs) of reservoir flow—
such as mass conservation, Darcy’s law, and
phase-equilibrium relations—directly into the loss
function. In this way, neural networks are trained
not only to fit observational data but also to satisfy
fundamental physical laws "*"). Compared with
purely data-driven models, PINNs generally ex-
hibit stronger physical consistency when training
samples are limited or when predictions must be
extrapolated to unseen operating conditions. This
makes them particularly suitable for complex
multiphase flow problems such as CCUS-EOR "*”,

In 2023, Han et al. " proposed a domain-de-
composition PINN framework (PINN-DD). By
partitioning the reservoir into two subdomains—
regions with wells and regions without wells—and
imposing governing-equation and boundary-con-
dition constraints separately, the method improved
modeling accuracy under sparse production-data
conditions. The results indicated that PINN-DD
can maintain reliable predictive performance
with limited monitoring data and shows stronger
stability and generalization than conventional
PINNS. In 2024, Han et al. ""** introduced a Criss-
Cross Physics-Informed Convolutional Neural
Network (CC-PINN) to address a key shortcoming
of traditional PINNs in strongly heterogeneous
reservoirs, namely the difficulty in ensuring inter-
cell flux continuity. By combining automatic dif-
ferentiation with 2D CNNs and introducing criss-
cross physical constraints within the convolutional
structure, the network learns parameterized PDE
solutions while enforcing flux continuity between
neighboring grid cells. Benchmark tests on mul-

tiple strongly heterogeneous reservoir problems
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showed that CC-PINN substantially outperforms
standard PINNSs, improving cross-boundary flux
accuracy and demonstrating greater robustness
under complex geological conditions.

Also in 2024, Liu et al. "* proposed a hard—
soft constrained PINN framework (HS-PINN).
This method introduced a Lorentz-based soft con-
straint and hard boundary-condition enforcement
for predicting near-well pressure fluctuations,
thereby maintaining high accuracy and stability
under complex geology. Their results reported
prediction errors below 1% in both single-well
and multi-well cases, while the computational
cost was only about 8% of that of conventional
simulations, indicating a promising tool for rapid
uncertainty quantification!"*. In 2025, Liu et al.
27 applied PINNs to the convection equations
of polymer-flooding reservoirs and developed a
high-accuracy model for predicting water satura-
tion and polymer concentration distributions. They
observed that using a single network to handle
the two variables outperformed a dual-network
structure in both accuracy and convergence speed.
Numerical stability was further enhanced by
introducing an artificial viscosity coefficient.

Nevertheless, a single PINN framework
still faces challenges when dealing with
high-dimensional complex equations, irregular
grids, and strongly nonlinear physical processes.
These challenges include convergence difficulties,
high training cost, and sensitivity to boundary
conditions. To further enhance the adaptability
and generalization of deep-learning models in
reservoir-development studies, researchers have
begun exploring more diverse physics—data
fusion strategies. A shared characteristic of these
methods is the explicit or implicit incorporation
of physical knowledge in network architectures,
loss design, or training workflows. This helps
overcome the “fast but unstable” limitation of

purely data-driven models, while also alleviating
optimization bottlenecks associated with the
single-route PINN paradigm.

In 2020, Wang et al. "** proposed
theory-guided neural networks (Theory-guided
Neural Networks, TgNN) for groundwater-flow
and solute-transport modeling, demonstrating
that the method can retain high accuracy even
under limited-data conditions. In 2021, Xu et al.
U] further developed a weak-form theory-guided
network, replacing strong-form constraints with
weak-form formulations and thereby significantly
improving numerical stability under complex
boundary conditions. In the same year, Wang et
al. """ proposed a physics-constrained training
strategy that combines the finite difference method
(Finite Difference Method, FDM) with CNNs.
In this approach, governing equations are first
discretized using FDM. The residuals of the
discretized PDEs are then computed based on
CNN predictions and minimized during training
to introduce physical constraints. Unlike Sobel
filtering, FDM can simultaneously compute spatial
and temporal gradients.

In 2025, Chen et al. "' proposed physics-in-
formed graph neural networks (PIGNN), integrat-
ing physical constraints with graph structures to
address the insufficient flux accuracy of traditional
PINNSs in irregular grids and strongly heterogene-
ous reservoirs. PIGNN substantially reduced errors
and improved computational efficiency in pressure
prediction for spatially heterogeneous reservoirs,
with an average R? of 0.998, demonstrating
superior performance over standard PINNs. Zhang
et al. "** introduced a physics-based deep CNN
framework for simulating and predicting reservoir
pressure fields. In this work, a finite-volume for-
mulation was used to compute governing-equation
residuals, thereby incorporating physics into the

learning process. To handle transient problems, a
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Fig. 6 The overall workflow of the PINN-GCEM model™*"!

sequence of CNNs was trained, with each network
responsible for predicting pressure at a single time
step. The output of one CNN served as the input to
the next, enabling stepwise temporal forecasting.

Wang et al. "’ developed a Hybrid
Physics-Informed Data-Driven Neural Network
(HPDNN) for simulating CO- storage dynamics
in depleted shale reservoirs. Built on a fully con-
nected neural network (FCNN), HPDNN captures
relationships between static and spatiotemporal
reservoir attributes (e.g., thickness, porosity,
wellbore storage, injection rate) and injection
responses (e.g., CO: injection pressure differential
and stored CO: volume). The model adopts a
hybrid training strategy that integrates data-driven
learning with physics-based constraints. Training
datasets are generated by numerical simulators,
while multiscale CO2 transport mechanisms—
including diffusion, adsorption, dissolution,
slip flow, and Darcy flow—are incorporated as
physical information to constrain network training.
After training, HPDNN can accurately predict CO-
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injection dynamics and storage capacity. It also
serves as a valuable tool for estimating reservoir
parameters from dynamic injection profiles, which
are critical for inverse modeling in geological
storage. By leveraging HPDNN, engineers
can bypass conventional, labor-intensive, and
computationally expensive numerical simulations
required for complex COs: storage systems, thereby
significantly improving inversion efficiency.

In 2024, Nagao and Datta-Gupta !'**
proposed a physics-constrained hybrid neural
framework that combines simplified physical
models with PINNs for production prediction
and interwell-connectivity identification in CO.-
EOR scenarios. The framework first generates
approximate solutions using simplified physics
to reduce model complexity, and then introduces
PDE constraints and physical regularization in
the loss function to ensure physically consistent
predictions. Tests on benchmark cases and field
data showed that this hybrid approach outperforms

purely machine-learning methods in predicting
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multiphase production rates and identifying
inter-well connectivity, offering stronger physical
interpretability and prediction stability. The results
suggest that the method can balance computational
efficiency and physical realism, providing a
feasible pathway toward real-time optimization
and closed-loop control for CO.-EOR.

In 2025, Xu et al. "** proposed the PINN-
GCEM framework, integrating the connecting
element method, GNNs, and PINNs to achieve
inter-well connectivity identification and dynamic
production prediction. This approach reportedly
outperforms conventional models in both accuracy
and efficiency, accurately capturing complex
inter-well connectivity and demonstrating
potential for real-time applications in CO2-EOR

optimization.

5 Conclusions and Perspectives

5.1 Conclusions

(1) Numerical simulation of CCUS-EOR has
evolved from improved black-oil/pseudo-compo-
sitional models, to K-value models, and ultimately
to EOS-based fully compositional models. Fully
compositional simulation can more systematically
capture key mechanisms such as dissolution,
extraction, swelling, and miscibility effects.
However, its high computational cost in large-
scale three-dimensional models and in iterative
history matching/optimization renders the conflict
between “high fidelity” and “high efficiency”
a primary bottleneck that constrains rapid field

decision-making.

(2) To address this bottleneck, three major
acceleration routes—multiscale, streamline, and
reduced-order modeling—have each demonstrated
distinct strengths. Multiscale methods embed fine-

scale heterogeneity into coarse-scale solutions

from the perspective of spatial discretization;
streamline methods enable efficient scenario
screening in convection-dominated settings; and
reduced-order models are well suited to serve
as fast prediction kernels in the outer loops of
history matching and optimization. Together,
these approaches have laid the groundwork for
engineering-grade CCUS-EOR simulation frame-
works with “controllable accuracy” and “affordable
runtimes.”

(3) Purely data-driven machine-learning and
deep-learning methods have shown clear efficien-
cy advantages in production forecasting, rapid
MMP estimation, and well-pattern/well-control
sensitivity analysis. In particular, emerging archi-
tectures such as GNNs, FNOs, and Transformers
offer stronger representational power for complex
well-network topologies and spatiotemporal
coupling. Nevertheless, their reliability remains
constrained by the representativeness of training
samples, physical consistency, and generalization
to out-of-distribution operating conditions.

(4) Data—physics coupled approaches have
become one of the most engineering-promising
directions. Simplified-mechanism models such as
CRM/INSIM, network-based frameworks such
as FlowNet/GPSNet, and physics-constrained
deep-learning paradigms including the connecting
element method and PINN-based models
provide scalable and unified frameworks for
inter-well-connectivity identification, dynamic
prediction, and rapid optimization in complex

heterogeneous reservoirs.

5.2 Perspectives

(1) Enhancing low-dimensional representa-
tions of complex phase behavior. For near-mis-
cible or miscible CCUS-EOR involving intricate
dissolution, extraction, and asphaltene-pre-
cipitation phenomena, future research should
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develop more efficient phase-behavior surrogates.
Alternatively, more accurate compositional flash
algorithms can be embedded into simplified
physics frameworks (e.g., connecting-element and
network models) to overcome current limitations

in representing complex thermodynamics.

(2) Building high-trust physics—data deep-fu-
sion architectures. Future efforts should further
explore how physical constraints are imposed,
shifting from soft constraints (loss-function penal-
ties) toward hard constraints (architecture design
and operator learning). For example, physics-en-
coded Transformers or GNNs could be advanced
to satisfy conservation laws while retaining strong
capability in handling unstructured grids and long-

range spatiotemporal dependencies.

(3) Improving robustness under small-sample
and noisy data regimes. Field data are often
sparse and noisy. Future models should integrate
uncertainty quantification with transfer learning or
few-shot learning to enhance inversion accuracy
and practical value under limited monitoring

conditions.

(4) Toward real-time optimization for
closed-loop control. The ultimate goal is to
embed efficient predictive models into real-time
production-optimization and closed-loop
management systems, enabling a transition from
“offline evaluation” to “online regulation,” thereby
maximizing both the economic performance and
storage efficiency of CCUS-EOR.
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