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Abstract:
gy, with a particular focus on its core software component—reservoir closed-loop optimization control

This paper presents a review of reservoir closed-loop optimization management technolo-

technology. This technology constitutes a closed-loop process encompassing two fundamental steps: au-
tomatic history matching and production optimization. History matching involves refining model param-
eters to align numerical models with actual production dynamics. Subsequently, production optimization
is performed based on the updated model. The goal is to maximize economic benefits or cumulative oil
production by automatically identifying the optimal injection-production scheme.

The mainstream methods in both areas can be categorized into gradient-based and gradient-free algo-
rithms. Gradient-based algorithms offer fast convergence but are complex to implement and difficult to
integrate with commercial simulators. In contrast, gradient-free algorithms provide greater versatility
but may face challenges in computational efficiency or convergence accuracy. In recent years, to over-
come the high computational cost associated with traditional numerical simulations, surrogate modeling
techniques have emerged as a significant research focus. These techniques accelerate the optimization
cycle by approximating the simulation process.

Keywords: Meshless method; Reservoir numerical simulation; Generalized finite difference method;
Fluid-solid coupling; Numerical algorithm

1 Introduction infrastructure. Consequently, oilfield development

is gradually transitioning from reliance on on-site

Petroleum, widely regarded as the lifeblood . .
human experience, judgment, and manual oper-

of industry, has long served as a strategic resource ., ¢, computer-aided remote decision-making

vital to the national economy. In recent years, the
rapid advancement of various modern intelligent
technologies has driven traditional industries
to continuously pursue intelligent and digital
transformation based on information technologies.
As a pillar of the energy sector, domestic oilfields

have extensively deployed intelligent oilfield

and automated control. Currently, oilfields are
undergoing further modernization and intelligent

upgrades utilizing big data '~

In recent years, stemming from the concept of
the intelligent oilfield, scholars both domestically
and internationally have proposed the reservoir
closed-loop optimization management technology
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to enhance the efficiency of modern reservoir
development and the application of information
technology. This technology primarily encom-
passes reservoir dynamic monitoring and real-time
control techniques, which facilitate the real-time
updating of reservoir development data, optimi-
zation of development strategies, and adjustment
of production equipment. The process begins
with monitoring reservoir formation production
status and output dynamics to obtain production
data. These data are then transmitted to surface
software platforms for comprehensive computer
analysis to rapidly formulate an optimal reservoir
development plan. Finally, the plan is fed back to
the field via a control system to regulate downhole

. . . 4-5
indicators such as fluid flow and flow pressure ',

The reservoir closed-loop optimization
management technology takes the reservoir
system (numerical model/reservoir model) as
the primary research object, combining reservoir
numerical simulation to accurately reproduce the
entire oilfield development process and assist in
formulating development plans. This technology
mainly comprises two key steps: automatic reser-
voir history matching and reservoir development
production optimization. First, actual reservoir
production data are used for history matching to
automatically correct reservoir model parameters,
thereby improving the model's prediction
accuracy. Then, based on the history-matched
reservoir model, reservoir production is treated
as an optimization problem. Targeting oilfield
development benefits or cumulative oil production
and combining reservoir numerical simulation
with intelligent optimization algorithms, the sys-
tem automatically optimizes injection-production
schemes for oil and water wells. This process
ultimately determines the optimal future reservoir
development policy. After new development

policies are adjusted and implemented, the newly

acquired production data are used to continue
history matching, further refining the reservoir
model. Once the model's predictive capability is
enhanced, a new round of production optimization
is initiated. Through continuous iterations of
history matching and production optimization,
this technology can significantly improve oilfield

recovery rates o7,

In recent years, this technology has become
a prominent research focus in intelligent reservoir
development management. Its advantages include
accurately reproducing the reservoir production
process, utilizing production dynamic data in
real-time to analyze reservoir development
status, reducing reservoir development risks,
and further improving development outcomes.
However, the reservoir closed-loop optimization
process still largely relies on manual experimental
design. Actual reservoir production optimization
constitutes a complex, large-scale optimization
problem. Traditional methods often suffer from
long implementation cycles, and the resulting op-
timized schemes frequently fail to meet expected
targets. Benefiting from the rapid development of
computer technology, automatic history matching
and production optimization technologies—
based on reservoir numerical simulation and
optimization theory—can now automatically
adjust reservoir geological parameters and derive
optimal development plans through optimization
algorithms. While these methods can more accu-
rately characterize reservoir geological features
and perform effective production optimization,
they typically require repeated calls to numerical
simulation. Consequently, closed-loop optimi-
zation methods based on traditional numerical
simulation exhibit low computational efficiency,
are time-consuming, and struggle to achieve
efficient computation. Therefore, it is necessary

to explore novel approaches to studying reservoir
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closed-loop optimization control methods
from the perspectives of both history matching
and production optimization. In the context of
developing intelligent reservoirs, this research
holds significant theoretical importance and
practical value for improving reservoir production
management, enhancing development efficiency,
and advancing the field ™.

2 Research Status

Automatic reservoir history matching and
production optimization represent two core aspects
of reservoir numerical simulation research and are
important topics within intelligent reservoir studies.
Traditional history matching is based on a reservoir
geological model, framing the improvement of the
match between reservoir model predictions and
observed data as an optimization problem. Com-
bined with optimization algorithms, it automatically
determines optimal reservoir model parameters
through repeated numerical simulation processes.
In contrast, reservoir production optimization
technology aims to maximize reservoir develop-
ment economic benefits or oil production. Based
on a history-matched reservoir model, it treats
the operational parameters of oil and water wells
as independent variables. By invoking numerical
simulation coupled with optimization algorithms, it
solves for the optimal reservoir development plan.
Concerning the specific issues involved in history
matching and production optimization, numerous
scholars have conducted extensive research. This
paper primarily examines the mainstream methods
in both areas .

2.1 Methods for Automatic Reservoir History

Matching

After nearly five decades of development,
mainstream history matching algorithms are now

divided into gradient-based and gradient-free
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categories. Among gradient-based methods, the
adjoint gradient method combined with the Lim-
ited Memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) method is notably efficient and
widely applied. Among gradient-free algorithms,
stochastic perturbation optimization algorithms,
ensemble-based algorithms, and other stochastic
optimization algorithms ensure high computa-
tional stability and efficiency. Additionally, to
address large-scale reservoir history matching
problems more conveniently, parameterization and
dimensionality reduction algorithms have been
proposed. These methods transform the original
high-dimensional computational problem into a

lower-dimensional space for solution.

In optimization algorithms, gradient-based
approaches require calculating the Jacobian or
Hessian matrix (second-order derivatives) to
swiftly determine the optimization direction.
In 1991, Tan et al. employed a Quasi-Newton
scheme to study a three-dimensional, three-phase
fully implicit numerical simulator, successfully
demonstrating simple applications of history
matching """, In 2002, Zhang and Reynolds
utilized the LBFGS algorithm to solve automatic
reservoir history matching problems. Their method
required only a few iteration steps to approximate
the Jacobian matrix using the objective function
gradient, thereby reducing computational costs
12l Although gradient-based algorithms exhibit
faster convergence rates, they necessitate using the
adjoint method to compute gradients. However,
due to the high dimensionality of reservoir param-
eters, obtaining analytical gradients via the adjoint
method is challenging, and the solution process is
exceptionally complex, making integration with

commercial simulators difficult.

Since the number of model grid characteristic
parameters requiring inversion in automatic histo-

ry matching can reach millions, direct computation
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under current conditions is extremely challenging.
Therefore, many researchers have not only im-
proved and innovated optimization algorithms but
also proposed reservoir model re-parameterization
methods to reduce the number of history matching
parameters. In 1976, Gavalas et al. employed a
simple approach, coarsening and partitioning a
large number of reservoir geological parameters
before adjusting uncertain parameters within each
region as a whole. Although this method improved
computational efficiency, it could not guarantee
accuracy . In 2004, Gao and Reynolds first pa-
rameterized production data to reduce the solution
dimensionality, combining this with the LBFGS
algorithm to correct model parameters "', In 2010,
Tavakoli and Reynolds proposed initially reducing
the covariance matrix dimensionality based on
singular value decomposition before combining
it with LBFGS to obtain reservoir models with
higher prediction accuracy "*!. In 2012, Sarma
et al., drawing on principal component analysis,
decomposed the covariance between inverted
geological parameters to reduce computational
dimensionality """ In 2008, Jafarpour et al.
utilized the Discrete Cosine Transform (DCT) to
treat reservoir geological parameters related to
production performance as inversion targets for
history matching ", Jin "' and Benjamin et al. """
applied the gradual deformation method. Based
on a set of reservoir models satisfying a Gaussian
distribution, they used a perturbation mechanism
to gradually modify deformation parameters,
ensuring the updated models retained spatial

correlations.

Compared to gradient-based algorithms,
gradient-free algorithms operate by constructing
approximate gradients, offering strong portability
and ease of integration with commercial simula-
tors. Gradient-free optimization algorithms are

further divided into global and local categories.

Local algorithms construct stochastic gradients,
allowing the optimization direction to navigate
among multiple local minima and eventually
converge to a superior local or even global
extremum. These algorithms share similar conver-
gence properties with global gradient algorithms
but exhibit slower convergence speeds. Among
local optimization algorithms, the Simultaneous
Perturbation Stochastic Approximation (SPSA)
is widely applied”” . However, because it did
not account for correlations between reservoir
model parameters, the computational results
showed significant deviations from actual
geological parameters. In 2011, Li and Reynolds
incorporated correlations between reservoir model
parameters into the SPSA algorithm to correct
gradient search directions. They also changed the
perturbation vector from a symmetric Bernoulli
distribution to a Gaussian distribution, making the
inversion results more consistent with geological
understanding ", Compared to local optimization
algorithms, global optimization algorithms search
for the optimal solution across the entire feasible
domain of the independent variables. Typical

global algorithms, such as simulated annealing **!

3231 "are often applied to

and genetic algorithms
reservoir history matching problems. However,
these algorithms typically require a large number
of numerical simulations, incurring high computa-

tional costs.

Reservoir systems are subject to significant
uncertainties, primarily stemming from the
reservoir model itself and production observation
data. Quantifying this uncertainty and improving
model prediction accuracy are major challenges in
automatic history matching. To address reservoir
model uncertainty, ensemble-based algorithms
generate a series of randomly perturbed models
based on an initial model and production dynamic

data. They use the average gradient computed
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from this ensemble of reservoir models to approx-
imate the true gradient. Through multiple data
assimilation steps, they obtain multiple reservoir
models and production predictions, thereby
characterizing reservoir system uncertainty. The
Ensemble Kalman Filter (ENKF), the Ensemble
Smoother with Multiple Data Assimilation
(ESMDA), and their derivative algorithms are
typical ensemble-based approaches. Since their
computational cost relates primarily to the number
of reservoir models and does not require direct
inversion of model geological parameters, they
achieve higher computational efficiency compared
to many gradient-free algorithms “***, Currently,
these algorithms represent the main next-stage
development in automatic history matching, fol-
lowing gradient-based and gradient-free methods.
Concerning reservoir system uncertainty, in 1999
Reynolds introduced the Randomized Maximum
Likelihood (RML) method from statistics. This
technique involves randomly sampling the initial
model and corresponding observation vectors.
By using production dynamic data from multiple
initial models to fit their corresponding perturbed
production observation data, it yields posterior
production dynamic predictions that conform to a
Gaussian distribution. This method assumes a lin-
ear relationship between reservoir predictions and
model parameters. When the model ensemble is
sufficiently large, the posterior estimates from the
ENKF and RML methods become approximately
equal . Additionally, Markov Chain Monte
Carlo (MCMC) methods and Rejection Sampling
(RS) methods sample the posterior model to
further improve model quality "**". However,
these methods still require a substantial number of
prior model computations, leading to considerable

computational expense.

The model updating process necessitates

numerous repeated numerical simulations, which
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is time-consuming. Consequently, many scholars
worldwide have turned to machine learning
methods to build proxy models. These models ap-
proximate the computationally intensive reservoir
numerical simulation process, thereby improving
overall computational efficiency. In 2018, Guo
et al. employed a support vector machine model
as a proxy. Using a set of reservoir numerical
simulation results under different operational
regimes as a training sample set, they utilized the
trained model as a forward model for production
prediction "?. Artificial neural networks have
been used to simulate and predict the relationships
between reservoir production rates, pressure, and
injection-production data. By employing specially
designed features for network training, these
models achieve high matching accuracy between
simulation results and actual data **. To enhance
the generalization ability of machine learning
proxy models, a reservoir production forecasting
model based on conditional generative adversarial
networks has been developed. This model utilizes
Bayesian optimization algorithms to automatically
optimize the model architecture through extensive
adversarial network training. Compared to fully
connected neural networks and random forest
models, it reduces the percentage error on test set
validation, thereby improving both generalization
ability and prediction accuracy "*. In 2021, Zhou
et al. leveraged the high nonlinear global effects,
strong adaptability, and self-learning capabilities
of artificial neural networks to establish a model
for steam-flooding reservoirs. This enables fast
and effective prediction of crude oil production
and aids in designing production parameters .
While machine learning algorithms can achieve
effective reservoir production predictions through
extensive data training, a significant limitation
persists. Due to their lack of inherent physical

meaning, the extrapolation results of such models
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may show substantial deviations when reservoir
development and production conditions change.
Furthermore, their complex training processes
can hinder practical application in actual reservoir
development.

The history matching methods described
above primarily treat reservoir model parameters
as the inversion target. Solving this optimization
problem still requires numerous repeated
numerical simulations. To address this issue, Sun
et al. ®" proposed a novel data assimilation-like
method called Data-Space Inversion (DSI). This
approach directly performs history matching
calculations using reservoir production prediction
data as the inversion target. The method involves
using numerical simulation results from a large
set of initial reservoir models to construct a data
space. A proxy-like model is then established by
parameterizing this data space. This proxy model
is subsequently used for production prediction
through history matching, with the entire fitting
calculation process involving only mathematical
computations. Unlike typical machine learning
models, this proxy model quantifies the weight
relationship of the true model relative to each
prior model. In DSI-based history matching
calculations, an objective function is established
based on Bayesian principles. Following the
randomized maximum likelihood principle, the
method computes credible production predictions
and quantifies reservoir system uncertainty—all
without inverting reservoir model parameters, thus
avoiding repeated numerical simulation. To date,
the DSI method has been primarily applied to
predicting reservoir production dynamics, as well
as formation CO2 concentration, oil saturation,
and pressure fields ***”.

2.2 Methods for Reservoir Development Pro-
duction Optimization

In reservoir development and production, the
operational parameters of oil and water wells sig-
nificantly influence the migration of underground
fluids, thereby altering the internal distribution
of oil saturation and pressure. Conventional
injection-production parameter design often relies
on subjective human experience and limited enu-
meration methods to formulate development plans.
This approach proves inadequate for reservoirs
with complex well connectivity and irregular
well patterns. Reservoir development production
optimization technology addresses this by building
upon a history-matched reservoir model. It frames
the optimal control of the reservoir production
system as an optimization problem. By combining
with algorithms, it automatically determines
optimal production adjustment plans for oil and
water wells across various development stages,
aiming to improve overall reservoir development
outcomes. In 2002, Brouwer et al. conducted
pioneering production optimization research using
a three-dimensional, three-phase implicit reservoir
numerical simulator and proposed a gradient-based
solution algorithm employing the adjoint method
41 Similar to the evolution of automatic history
matching technology, the primary algorithms for
production optimization can be classified into
gradient-based and gradient-free categories.

In production optimization calculations,
obtaining gradients directly is often very difficult.
The adjoint gradient method, developed based on
variational principles, is currently the mainstream
gradient algorithm for solving production
optimization problems. In 2021, Ibiam combined
the adjoint method with the discrete maximum
principle to solve a polymer flooding production
parameter control model. By optimizing polymer
injection concentration and injection rate, an
optimal injection scheme was derived, leading to

improved outcomes for polymer flooding reservoir
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development Y. Similarly, Zhang Kai et al., based
on a fully implicit black-oil simulation model and
the maximum principle solution method, employed
the adjoint gradient method to solve an optimal
control mathematical model, thereby enhancing
reservoir development benefits **). While this
class of algorithms can accurately determine the
objective function gradient, their implementation
is complex. They require embedding the adjoint
matrix into the numerical simulation code, and
each iteration necessitates both forward and
backward gradient calculations under fully implicit
conditions. This significantly increases program
complexity and poses challenges for direct
commercialization. For more complex real-world
reservoir development problems, such as those
involving secondary and tertiary recovery, the
adjoint gradient method may struggle to compute
the true gradient accurately. Consequently, its
comprehensive application to actual reservoir

production optimization remains limited.

Gradient-free algorithms, which obtain ap-
proximate gradients, offer simpler calculations and
broader applicability. The stochastic perturbation
approximate gradient algorithm, a member of
the gradient-free optimization family, has also
been applied to production optimization. This
algorithm performs random perturbations on each
control variable and then computes an average
perturbation gradient. This ensures the search
direction consistently moves uphill, guaranteeing
algorithm convergence ). In 2009, Chen et
al. proposed an ensemble-based gradient-free
optimization algorithm (EnOpt). This method
generates multiple realizations of control variables
to compute a sensitivity matrix between each
realization and the optimization objective, thereby
determining the search direction ¥, In practical
applications, gradient-free algorithms generally
demonstrate better applicability, though their
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computational efficiency is often lower than that of
gradient-based methods. Considering the inherent
uncertainty in reservoir systems, the concept of
robust optimization has been introduced into pro-
duction optimization calculations. By generating
a large ensemble of reservoir model realizations
and performing unified optimization across them,
more robust optimization schemes can be obtained
1 Additionally, heuristic algorithms such as ant
colony optimization and simulated annealing—
recognized for their strong global search
capabilities—have found practical application in

oilfield development "

Machine learning proxy model-assisted pro-
duction optimization represents a current research
hotspot in intelligent reservoir development.
These methods significantly improve optimization
computational efficiency by establishing proxy
models to replace the traditional, complex, and
time-consuming reservoir numerical simulation
process. In 2015, Golzari et al. used production
dynamics to train and update an artificial neural
network, which was then combined with a genetic
algorithm to perform production optimization
calculations °". In 2020, Chen et al. approximated
the numerical simulation process by establishing
a combined global and local proxy modeling
framework "**). The Data-Space Inversion (DSI)
method also facilitates optimization by establish-
ing a specialized proxy model. In 2019, Jiang et
al. pioneered the extension of the DSI method to
reservoir production optimization. They incorpo-
rated operational parameters (well controls) into
the data space. Optimization calculations within
this framework yielded production predictions
that satisfied historical observation data under the
corresponding oil and water well production con-
trols, ultimately leading to an optimal production
control scheme "%, In 2022, Kim et al., building
upon the DSI method, utilized a history-matched
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proxy model to extrapolate production predictions
conforming to different operational regimes (well
controls), thereby conducting reservoir production
optimization **, A key distinction from standard
machine learning models is that this proxy model
quantifies the weight of the true model relative to
each prior model in the ensemble. This allows it
to effectively extrapolate future production trends

when reservoir production conditions change.

3 Conclusion

This paper provides a systematic review
of the literature and current research status
concerning the reservoir closed-loop optimization
management technology within the context
of intelligent oilfield development. Regarding
automatic reservoir history matching, it offers a
comprehensive overview of mainstream methods,
categorizing them into gradient-based and gradi-
ent-free algorithms. It introduces the development,
advantages, and disadvantages of representative
techniques, such as the adjoint gradient method,
SPSA, and the Ensemble Kalman Filter.
Simultaneously, it reviews parameterization/
dimensionality reduction methods and proxy
model approaches—including machine learning
models and Data-Space Inversion—developed to
mitigate computational costs. The paper similarly
categorizes and examines the application and
evolution of gradient-based algorithms (e.g., the
adjoint method) and gradient-free algorithms
(e.g., EnOpt, heuristic algorithms). It highlights
the current research emphasis on employing
proxy models to assist optimization, thereby
circumventing the limitations of time-consuming
traditional numerical simulation. In summary,
exploring novel approaches—particularly from
the dual perspectives of efficient history matching
and production optimization—is essential for

advancing the study of reservoir closed-loop

optimization control methods. Such endeavors
are crucial for improving reservoir management
efficiency and propelling the intelligentization of
oilfield operations.
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