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1 Introduction

Petroleum, widely regarded as the lifeblood 
of industry, has long served as a strategic resource 
vital to the national economy. In recent years, the 
rapid advancement of various modern intelligent 
technologies has driven traditional industries 
to continuously pursue intelligent and digital 
transformation based on information technologies. 
As a pillar of the energy sector, domestic oilfields 
have extensively deployed intelligent oilfield 

infrastructure. Consequently, oilfield development 
is gradually transitioning from reliance on on-site 
human experience, judgment, and manual oper-
ation to computer-aided remote decision-making 
and automated control. Currently, oilfields are 
undergoing further modernization and intelligent 
upgrades utilizing big data [1-3].

In recent years, stemming from the concept of 
the intelligent oilfield, scholars both domestically 
and internationally have proposed the reservoir 
closed-loop optimization management technology 
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to enhance the efficiency of modern reservoir 
development and the application of information 
technology. This technology primarily encom-
passes reservoir dynamic monitoring and real-time 
control techniques, which facilitate the real-time 
updating of reservoir development data, optimi-
zation of development strategies, and adjustment 
of production equipment. The process begins 
with monitoring reservoir formation production 
status and output dynamics to obtain production 
data. These data are then transmitted to surface 
software platforms for comprehensive computer 
analysis to rapidly formulate an optimal reservoir 
development plan. Finally, the plan is fed back to 
the field via a control system to regulate downhole 
indicators such as fluid flow and flow pressure [4-5].

The reservoir closed-loop optimization 
management technology takes the reservoir 
system (numerical model/reservoir model) as 
the primary research object, combining reservoir 
numerical simulation to accurately reproduce the 
entire oilfield development process and assist in 
formulating development plans. This technology 
mainly comprises two key steps: automatic reser-
voir history matching and reservoir development 
production optimization. First, actual reservoir 
production data are used for history matching to 
automatically correct reservoir model parameters, 
thereby improving the model 's  prediction 
accuracy. Then, based on the history-matched 
reservoir model, reservoir production is treated 
as an optimization problem. Targeting oilfield 
development benefits or cumulative oil production 
and combining reservoir numerical simulation 
with intelligent optimization algorithms, the sys-
tem automatically optimizes injection-production 
schemes for oil and water wells. This process 
ultimately determines the optimal future reservoir 
development policy. After new development 
policies are adjusted and implemented, the newly 

acquired production data are used to continue 
history matching, further refining the reservoir 
model. Once the model's predictive capability is 
enhanced, a new round of production optimization 
is initiated. Through continuous iterations of 
history matching and production optimization, 
this technology can significantly improve oilfield 
recovery rates [6-7].

In recent years, this technology has become 
a prominent research focus in intelligent reservoir 
development management. Its advantages include 
accurately reproducing the reservoir production 
process, utilizing production dynamic data in 
real-time to analyze reservoir development 
status, reducing reservoir development risks, 
and further improving development outcomes. 
However, the reservoir closed-loop optimization 
process still largely relies on manual experimental 
design. Actual reservoir production optimization 
constitutes a complex, large-scale optimization 
problem. Traditional methods often suffer from 
long implementation cycles, and the resulting op-
timized schemes frequently fail to meet expected 
targets. Benefiting from the rapid development of 
computer technology, automatic history matching 
and production optimization technologies—
based on reservoir numerical simulation and 
optimization theory—can now automatically 
adjust reservoir geological parameters and derive 
optimal development plans through optimization 
algorithms. While these methods can more accu-
rately characterize reservoir geological features 
and perform effective production optimization, 
they typically require repeated calls to numerical 
simulation. Consequently, closed-loop optimi-
zation methods based on traditional numerical 
simulation exhibit low computational efficiency, 
are time-consuming, and struggle to achieve 
efficient computation. Therefore, it is necessary 
to explore novel approaches to studying reservoir 
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closed-loop optimization control methods 
from the perspectives of both history matching 
and production optimization. In the context of 
developing intelligent reservoirs, this research 
holds significant theoretical importance and 
practical value for improving reservoir production 
management, enhancing development efficiency, 
and advancing the field [8].

2 Research Status

Automatic reservoir history matching and 
production optimization represent two core aspects 
of reservoir numerical simulation research and are 
important topics within intelligent reservoir studies. 
Traditional history matching is based on a reservoir 
geological model, framing the improvement of the 
match between reservoir model predictions and 
observed data as an optimization problem. Com-
bined with optimization algorithms, it automatically 
determines optimal reservoir model parameters 
through repeated numerical simulation processes. 
In contrast, reservoir production optimization 
technology aims to maximize reservoir develop-
ment economic benefits or oil production. Based 
on a history-matched reservoir model, it treats 
the operational parameters of oil and water wells 
as independent variables. By invoking numerical 
simulation coupled with optimization algorithms, it 
solves for the optimal reservoir development plan. 
Concerning the specific issues involved in history 
matching and production optimization, numerous 
scholars have conducted extensive research. This 
paper primarily examines the mainstream methods 
in both areas [9-10].

2.1	Methods for Automatic Reservoir History 
Matching

After nearly five decades of development, 
mainstream history matching algorithms are now 
divided into gradient-based and gradient-free 

categories. Among gradient-based methods, the 
adjoint gradient method combined with the Lim-
ited Memory Broyden-Fletcher-Goldfarb-Shanno 
(LBFGS) method is  notably efficient  and 
widely applied. Among gradient-free algorithms, 
stochastic perturbation optimization algorithms, 
ensemble-based algorithms, and other stochastic 
optimization algorithms ensure high computa-
tional stability and efficiency. Additionally, to 
address large-scale reservoir history matching 
problems more conveniently, parameterization and 
dimensionality reduction algorithms have been 
proposed. These methods transform the original 
high-dimensional computational problem into a 
lower-dimensional space for solution.

In optimization algorithms, gradient-based 
approaches require calculating the Jacobian or 
Hessian matrix (second-order derivatives) to 
swiftly determine the optimization direction. 
In 1991, Tan et al. employed a Quasi-Newton 
scheme to study a three-dimensional, three-phase 
fully implicit numerical simulator, successfully 
demonstrating simple applications of history 
matching [11]. In 2002, Zhang and Reynolds 
utilized the LBFGS algorithm to solve automatic 
reservoir history matching problems. Their method 
required only a few iteration steps to approximate 
the Jacobian matrix using the objective function 
gradient, thereby reducing computational costs 
[12]. Although gradient-based algorithms exhibit 
faster convergence rates, they necessitate using the 
adjoint method to compute gradients. However, 
due to the high dimensionality of reservoir param-
eters, obtaining analytical gradients via the adjoint 
method is challenging, and the solution process is 
exceptionally complex, making integration with 
commercial simulators difficult.

Since the number of model grid characteristic 
parameters requiring inversion in automatic histo-
ry matching can reach millions, direct computation 
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under current conditions is extremely challenging. 
Therefore, many researchers have not only im-
proved and innovated optimization algorithms but 
also proposed reservoir model re-parameterization 
methods to reduce the number of history matching 
parameters. In 1976, Gavalas et al. employed a 
simple approach, coarsening and partitioning a 
large number of reservoir geological parameters 
before adjusting uncertain parameters within each 
region as a whole. Although this method improved 
computational efficiency, it could not guarantee 
accuracy [13]. In 2004, Gao and Reynolds first pa-
rameterized production data to reduce the solution 
dimensionality, combining this with the LBFGS 
algorithm to correct model parameters [14]. In 2010, 
Tavakoli and Reynolds proposed initially reducing 
the covariance matrix dimensionality based on 
singular value decomposition before combining 
it with LBFGS to obtain reservoir models with 
higher prediction accuracy [15]. In 2012, Sarma 
et al., drawing on principal component analysis, 
decomposed the covariance between inverted 
geological parameters to reduce computational 
dimensionality [16]. In 2008, Jafarpour et al. 
utilized the Discrete Cosine Transform (DCT) to 
treat reservoir geological parameters related to 
production performance as inversion targets for 
history matching [17]. Jin [18] and Benjamin et al. [19] 
applied the gradual deformation method. Based 
on a set of reservoir models satisfying a Gaussian 
distribution, they used a perturbation mechanism 
to gradually modify deformation parameters, 
ensuring the updated models retained spatial 
correlations.

Compared to gradient-based algorithms, 
gradient-free algorithms operate by constructing 
approximate gradients, offering strong portability 
and ease of integration with commercial simula-
tors. Gradient-free optimization algorithms are 
further divided into global and local categories. 

Local algorithms construct stochastic gradients, 
allowing the optimization direction to navigate 
among multiple local minima and eventually 
converge to a superior local or even global 
extremum. These algorithms share similar conver-
gence properties with global gradient algorithms 
but exhibit slower convergence speeds. Among 
local optimization algorithms, the Simultaneous 
Perturbation Stochastic Approximation (SPSA) 
is widely applied[20] . However, because it did 
not account for correlations between reservoir 
model parameters, the computational results 
showed significant deviations from actual 
geological parameters. In 2011, Li and Reynolds 
incorporated correlations between reservoir model 
parameters into the SPSA algorithm to correct 
gradient search directions. They also changed the 
perturbation vector from a symmetric Bernoulli 
distribution to a Gaussian distribution, making the 
inversion results more consistent with geological 
understanding [21]. Compared to local optimization 
algorithms, global optimization algorithms search 
for the optimal solution across the entire feasible 
domain of the independent variables. Typical 
global algorithms, such as simulated annealing [22] 
and genetic algorithms [23-25], are often applied to 
reservoir history matching problems. However, 
these algorithms typically require a large number 
of numerical simulations, incurring high computa-
tional costs.

Reservoir systems are subject to significant 
uncertainties, primarily stemming from the 
reservoir model itself and production observation 
data. Quantifying this uncertainty and improving 
model prediction accuracy are major challenges in 
automatic history matching. To address reservoir 
model uncertainty, ensemble-based algorithms 
generate a series of randomly perturbed models 
based on an initial model and production dynamic 
data. They use the average gradient computed 
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from this ensemble of reservoir models to approx-
imate the true gradient. Through multiple data 
assimilation steps, they obtain multiple reservoir 
models and production predictions, thereby 
characterizing reservoir system uncertainty. The 
Ensemble Kalman Filter (ENKF), the Ensemble 
Smoother with Multiple Data Assimilation 
(ESMDA), and their derivative algorithms are 
typical ensemble-based approaches. Since their 
computational cost relates primarily to the number 
of reservoir models and does not require direct 
inversion of model geological parameters, they 
achieve higher computational efficiency compared 
to many gradient-free algorithms [26-28]. Currently, 
these algorithms represent the main next-stage 
development in automatic history matching, fol-
lowing gradient-based and gradient-free methods. 
Concerning reservoir system uncertainty, in 1999 
Reynolds introduced the Randomized Maximum 
Likelihood (RML) method from statistics. This 
technique involves randomly sampling the initial 
model and corresponding observation vectors. 
By using production dynamic data from multiple 
initial models to fit their corresponding perturbed 
production observation data, it yields posterior 
production dynamic predictions that conform to a 
Gaussian distribution. This method assumes a lin-
ear relationship between reservoir predictions and 
model parameters. When the model ensemble is 
sufficiently large, the posterior estimates from the 
ENKF and RML methods become approximately 
equal [29]. Additionally, Markov Chain Monte 
Carlo (MCMC) methods and Rejection Sampling 
(RS) methods sample the posterior model to 
further improve model quality [30-31]. However, 
these methods still require a substantial number of 
prior model computations, leading to considerable 
computational expense.

The model updating process necessitates 
numerous repeated numerical simulations, which 

is time-consuming. Consequently, many scholars 
worldwide have turned to machine learning 
methods to build proxy models. These models ap-
proximate the computationally intensive reservoir 
numerical simulation process, thereby improving 
overall computational efficiency. In 2018, Guo 
et al. employed a support vector machine model 
as a proxy. Using a set of reservoir numerical 
simulation results under different operational 
regimes as a training sample set, they utilized the 
trained model as a forward model for production 
prediction [32]. Artificial neural networks have 
been used to simulate and predict the relationships 
between reservoir production rates, pressure, and 
injection-production data. By employing specially 
designed features for network training, these 
models achieve high matching accuracy between 
simulation results and actual data [33]. To enhance 
the generalization ability of machine learning 
proxy models, a reservoir production forecasting 
model based on conditional generative adversarial 
networks has been developed. This model utilizes 
Bayesian optimization algorithms to automatically 
optimize the model architecture through extensive 
adversarial network training. Compared to fully 
connected neural networks and random forest 
models, it reduces the percentage error on test set 
validation, thereby improving both generalization 
ability and prediction accuracy [34]. In 2021, Zhou 
et al. leveraged the high nonlinear global effects, 
strong adaptability, and self-learning capabilities 
of artificial neural networks to establish a model 
for steam-flooding reservoirs. This enables fast 
and effective prediction of crude oil production 
and aids in designing production parameters [35]. 
While machine learning algorithms can achieve 
effective reservoir production predictions through 
extensive data training, a significant limitation 
persists. Due to their lack of inherent physical 
meaning, the extrapolation results of such models 
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may show substantial deviations when reservoir 
development and production conditions change. 
Furthermore, their complex training processes 
can hinder practical application in actual reservoir 
development.

The history matching methods described 
above primarily treat reservoir model parameters 
as the inversion target. Solving this optimization 
problem st i l l  requires numerous repeated 
numerical simulations. To address this issue, Sun 
et al. [36-37] proposed a novel data assimilation-like 
method called Data-Space Inversion (DSI). This 
approach directly performs history matching 
calculations using reservoir production prediction 
data as the inversion target. The method involves 
using numerical simulation results from a large 
set of initial reservoir models to construct a data 
space. A proxy-like model is then established by 
parameterizing this data space. This proxy model 
is subsequently used for production prediction 
through history matching, with the entire fitting 
calculation process involving only mathematical 
computations. Unlike typical machine learning 
models, this proxy model quantifies the weight 
relationship of the true model relative to each 
prior model. In DSI-based history matching 
calculations, an objective function is established 
based on Bayesian principles. Following the 
randomized maximum likelihood principle, the 
method computes credible production predictions 
and quantifies reservoir system uncertainty—all 
without inverting reservoir model parameters, thus 
avoiding repeated numerical simulation. To date, 
the DSI method has been primarily applied to 
predicting reservoir production dynamics, as well 
as formation CO2 concentration, oil saturation, 
and pressure fields [38-39].

2.2	Methods for Reservoir Development Pro-
duction Optimization

In reservoir development and production, the 
operational parameters of oil and water wells sig-
nificantly influence the migration of underground 
fluids, thereby altering the internal distribution 
of oil saturation and pressure. Conventional 
injection-production parameter design often relies 
on subjective human experience and limited enu-
meration methods to formulate development plans. 
This approach proves inadequate for reservoirs 
with complex well connectivity and irregular 
well patterns. Reservoir development production 
optimization technology addresses this by building 
upon a history-matched reservoir model. It frames 
the optimal control of the reservoir production 
system as an optimization problem. By combining 
with algorithms, it automatically determines 
optimal production adjustment plans for oil and 
water wells across various development stages, 
aiming to improve overall reservoir development 
outcomes. In 2002, Brouwer et al. conducted 
pioneering production optimization research using 
a three-dimensional, three-phase implicit reservoir 
numerical simulator and proposed a gradient-based 
solution algorithm employing the adjoint method 
[40]. Similar to the evolution of automatic history 
matching technology, the primary algorithms for 
production optimization can be classified into 
gradient-based and gradient-free categories.

In production optimization calculations, 
obtaining gradients directly is often very difficult. 
The adjoint gradient method, developed based on 
variational principles, is currently the mainstream 
gradient algorithm for solving production 
optimization problems. In 2021, Ibiam combined 
the adjoint method with the discrete maximum 
principle to solve a polymer flooding production 
parameter control model. By optimizing polymer 
injection concentration and injection rate, an 
optimal injection scheme was derived, leading to 
improved outcomes for polymer flooding reservoir 
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development [41]. Similarly, Zhang Kai et al., based 
on a fully implicit black-oil simulation model and 
the maximum principle solution method, employed 
the adjoint gradient method to solve an optimal 
control mathematical model, thereby enhancing 
reservoir development benefits [42]. While this 
class of algorithms can accurately determine the 
objective function gradient, their implementation 
is complex. They require embedding the adjoint 
matrix into the numerical simulation code, and 
each iteration necessitates both forward and 
backward gradient calculations under fully implicit 
conditions. This significantly increases program 
complexity and poses challenges for direct 
commercialization. For more complex real-world 
reservoir development problems, such as those 
involving secondary and tertiary recovery, the 
adjoint gradient method may struggle to compute 
the true gradient accurately. Consequently, its 
comprehensive application to actual reservoir 
production optimization remains limited.

Gradient-free algorithms, which obtain ap-
proximate gradients, offer simpler calculations and 
broader applicability. The stochastic perturbation 
approximate gradient algorithm, a member of 
the gradient-free optimization family, has also 
been applied to production optimization. This 
algorithm performs random perturbations on each 
control variable and then computes an average 
perturbation gradient. This ensures the search 
direction consistently moves uphill, guaranteeing 
algorithm convergence [43]. In 2009, Chen et 
al. proposed an ensemble-based gradient-free 
optimization algorithm (EnOpt). This method 
generates multiple realizations of control variables 
to compute a sensitivity matrix between each 
realization and the optimization objective, thereby 
determining the search direction [44]. In practical 
applications, gradient-free algorithms generally 
demonstrate better applicability, though their 

computational efficiency is often lower than that of 
gradient-based methods. Considering the inherent 
uncertainty in reservoir systems, the concept of 
robust optimization has been introduced into pro-
duction optimization calculations. By generating 
a large ensemble of reservoir model realizations 
and performing unified optimization across them, 
more robust optimization schemes can be obtained 
[45]. Additionally, heuristic algorithms such as ant 
colony optimization and simulated annealing—
recognized for  their  s trong global  search 
capabilities—have found practical application in 
oilfield development [46-50].

Machine learning proxy model-assisted pro-
duction optimization represents a current research 
hotspot in intelligent reservoir development. 
These methods significantly improve optimization 
computational efficiency by establishing proxy 
models to replace the traditional, complex, and 
time-consuming reservoir numerical simulation 
process. In 2015, Golzari et al. used production 
dynamics to train and update an artificial neural 
network, which was then combined with a genetic 
algorithm to perform production optimization 
calculations [51]. In 2020, Chen et al. approximated 
the numerical simulation process by establishing 
a combined global and local proxy modeling 
framework [52]. The Data-Space Inversion (DSI) 
method also facilitates optimization by establish-
ing a specialized proxy model. In 2019, Jiang et 
al. pioneered the extension of the DSI method to 
reservoir production optimization. They incorpo-
rated operational parameters (well controls) into 
the data space. Optimization calculations within 
this framework yielded production predictions 
that satisfied historical observation data under the 
corresponding oil and water well production con-
trols, ultimately leading to an optimal production 
control scheme [53-54]. In 2022, Kim et al., building 
upon the DSI method, utilized a history-matched 



61

ASEIG  Vol. 1, Issue. 1 ( Dec. 2025 )

proxy model to extrapolate production predictions 
conforming to different operational regimes (well 
controls), thereby conducting reservoir production 
optimization [55]. A key distinction from standard 
machine learning models is that this proxy model 
quantifies the weight of the true model relative to 
each prior model in the ensemble. This allows it 
to effectively extrapolate future production trends 
when reservoir production conditions change.

3 Conclusion

This paper provides a systematic review 
of the literature and current research status 
concerning the reservoir closed-loop optimization 
management technology within the context 
of intelligent oilfield development. Regarding 
automatic reservoir history matching, it offers a 
comprehensive overview of mainstream methods, 
categorizing them into gradient-based and gradi-
ent-free algorithms. It introduces the development, 
advantages, and disadvantages of representative 
techniques, such as the adjoint gradient method, 
SPSA,  and the  Ensemble  Kalman Fi l te r . 
Simultaneously, it reviews parameterization/
dimensionality reduction methods and proxy 
model approaches—including machine learning 
models and Data-Space Inversion—developed to 
mitigate computational costs. The paper similarly 
categorizes and examines the application and 
evolution of gradient-based algorithms (e.g., the 
adjoint method) and gradient-free algorithms 
(e.g., EnOpt, heuristic algorithms). It highlights 
the current research emphasis on employing 
proxy models to assist optimization, thereby 
circumventing the limitations of time-consuming 
traditional numerical simulation. In summary, 
exploring novel approaches—particularly from 
the dual perspectives of efficient history matching 
and production optimization—is essential for 
advancing the study of reservoir closed-loop 

optimization control methods. Such endeavors 
are crucial for improving reservoir management 
efficiency and propelling the intelligentization of 
oilfield operations.
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