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Abstract: This study pioneers the application of Boundary-Integral Neural Networks (BINNs) to sub-
surface flow simulation, addressing steady-state single-phase flow governed by Laplace-type equations
in hydrocarbon reservoirs. BINNs synergistically integrate boundary integral equations (BIEs) with
deep learning to overcome limitations of traditional mesh-based methods and Physics-Informed Neural
Networks (PINNs). By leveraging Green’s functions, BINNs transform partial differential equations
into boundary-only formulations, where neural networks exclusively approximate boundary unknowns
(pressure/flux), and interior solutions are reconstructed analytically. This approach achieves intrinsic di-
mensionality reduction, eliminating spatial domain discretization while ensuring mathematical consist-
ency through exact boundary condition enforcement. Numerical validation demonstrates BINNs’ com-
putational advantages: In a rectangular reservoir, BINNs achieve sub-0.01% relative error (4.80x10—4
MPa) at interior points. For a complex trapezoidal reservoir with geometric singularities, BINNs attain
Boundary Element Method (BEM)-comparable accuracy (max error ~0.115MPa) without specialized
singularity treatments. Furthermore, in a challenging non-convex domain featuring recessed bounda-
ries and internal production wells, BINNs effectively resolve the pressure singularities near wellbores,
achieving high-fidelity reconstruction with a maximum relative error of 0.32%. The method’s efficien-
cy is evidenced by rapid convergence with minimal boundary sampling and moderate network sizes.
BINNSs provide a robust, meshless paradigm for reservoir-scale simulation, effectively handling irregular
geometries while maintaining high fidelity and scalability, which uncovers its remarkable computational
capabilities in the realm of single-phase flow, and offers an inaugural investigation and benchmark for
its prospective extensive utilization in numerical reservoir simulations.
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1 Introduction

As the demand for increased accuracy and
efficiency in reservoir flow simulation during hy-
drocarbon exploration and development continues
to grow, traditional numerical methods such as the
Finite Element Method (FEM) and Finite Volume
Method (FVM) face significant challenges in
solving the partial differential equations (PDEs)
that describe subsurface flow processes. These
approaches rely on complex spatial discretization
meshes, which pose difficulties when handling
intricate geometries or highly nonlinear problems,
often resulting in substantial computational costs
and mesh generation complexities, while also be-
ing prone to numerical dissipation issues (Hughes,
2003; LeVeque, 2002; Rao et al., 2024a).

Recently, deep learning frameworks exem-
plified by Physics-Informed Neural Networks
(PINNs) have emerged, embedding physical
laws as residuals within loss functions to enable
meshless PDE solutions (Raissi et al., 2019; Rao
et al., 2025a; Rao et al., 2025b;). Leveraging the
function approximation capabilities of neural
networks, PINNs directly learn the solution
mappings from data and governing equations,
theoretically circumventing the dependency on
spatial discretization meshes characteristic of
traditional methods (Liu et al., 2025).

However, PINNs encounter limitations when
applied to reservoir-scale flow problems. Their
global sampling strategies lead to exponential
increases in training costs as the computational
domain expands, and they often suffer from
reduced accuracy near boundary singularities,
such as wellbore regions (Krishnapriyan et al.,
2021; Wang et al., 2021). To address these issues,

Boundary Integral Neural Networks (BINNs)
have been developed (Lin et al., 2023; Sun et al.,
2023). BINNs integrate the mathematical core
of Boundary Integral Equations (BIE) with deep
learning architectures, transforming PDEs into
boundary-only integral equations via Green’s
functions (Brebbia et al., 2012). Within this
framework, neural networks are tasked solely with
learning boundary unknowns—such as potential
functions or their normal derivatives—while
the solution within the domain is reconstructed

through boundary integrals.

Compared to the global sampling-based
solution paradigm of PINNs, BINNs demonstrate
distinct advantages in efficiency and robustness:
1) BINNs achieve dimensionality reduction by
solving BIEs, requiring only boundary sampling
and thus significantly enhancing scalability for
large-scale reservoir simulations; 2) they impose
boundary conditions analytically, overcoming the
approximation errors associated with PINN penal-
ty methods and ensuring mathematical consistency
of the solution; 3) the inherent Green’s function
kernel in boundary integral equations naturally
adapts to fundamental solution characteristics,
enabling accurate capture of solution behavior in
regions with singularities, such as well points or
crack tips, without specialized treatment.

In recent years, substantial progress has been
made in the theoretical development and practical
applications of BINNs. Lin et al. (2023) introduced
the initial BINet framework, combining boundary
integral equations with deep learning, utilizing
potential theory to convert PDEs into boundary
integral forms, and proving network convergence

via neural tangent kernel theory. Zhang et al.
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(2022) pioneered the integration of NURBS
boundary parameterization and Telles’ singularity
treatment strategies into BINNSs, validating their
effectiveness on Laplace equation benchmarks.
Sun et al. (2023) systematically demonstrated the
dimensionality reduction benefits of boundary
integral-based BINNSs in transferring unknowns
from the domain to the boundary, simplifying
loss function design and improving computational
efficiency. Concurrently, operator learning ap-
proaches driven by boundary integral equations
have advanced, exemplified by Meng et al. (2024),
who developed BI-DeepONet and BI-TDONet
models capable of cross-domain generalization,
enabling rapid inference of Laplace and acoustic
scattering problems with a single training session.
Dai et al. (2024) proposed the BI-GreenNet model,
which extends the dimensionality reduction concept
to Navier-Stokes equations through a boundary
integral weight-sharing reconstruction mechanism.
The application scope of BINNs has since expanded
to elasticity and acoustics. Damiano and van Wa-
terschoot (2025) employed the Physically Informed
Boundary Integral Network (PIBI-Net), a variant of
BINN, for acoustic field reconstruction, achieving
high robustness with boundary-only data. Zhang et
al. (2024) first applied BINNs to two-dimensional
elasticity and piezoelectric problems, demonstrating
that boundary discretization alone suffices to ensure
the automatic satisfaction of governing equations.

Despite these advances, the application of
BINNs to subsurface flow modeling remains un-
explored. This study aims to investigate the foun-
dational application of BINNs in two-dimensional
single-phase reservoir flow problems, constructing
a boundary integral-based neural network model
for flow simulation, thereby providing a novel
methodological approach for numerical modeling

in hydrocarbon reservoirs.
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2 Methodology

2.1 The governing equation

The seepage governing equations in
subsurface porous media primarily consists of
the fluid mass conservation equation and Darcy’s
law, which is derived from physical experiments.
Assuming steady flow without source or sink
terms, the mass conservation equation for the fluid

is given by:
V.v=0 (1)

where v is the seepage velocity of the fluid,
. . . T
and in two dimensions, v = (vx,vy) .

Darcy’s law is described as:

v=-KVp )

where K= is the hydraulic conductivity

H . . .
(assumed to be a constant scalar, isotropic), p is
the fluid pressure.

Substituting Eq. (2) into Eq. (1) yields an
equation solely in terms of pressure p:

V-(KVp(x))zO, =xeQC R (3)

In the absence of internal sources or sinks,
as shown in Eq. (4), this seepage problem
generally has both Dirichlet boundary conditions
representing constant pressure boundaries and
Neumann boundary conditions representing sealed
or constant flow rates (Rao et al., 2022; Rao et al.,
2024b).

Dirichlet boundary condition:
p(x) = ﬁ(x), xel'y,
Neumann boundary condition:
v(x)=-KVp(x), xel

“)

where 7(x) and Vp(x) represents the known
pressure and pressure gradient vector at point x,

and T, is the Dirichlet boundary, 'y, is the
Neumann boundary.
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2.2 Boundary integral equations (BIEs)

The fundamental solution of the two-dimen-
sional Laplace equation is:

1
T on ln(r)

G(x,a) ®)

where r=Ilx—a is the Euclidean distance
between the source point @ and the field point x.

After incorporating the fundamental solution,
the governing equations can be transformed into
boundary integral form based on Green’s second

equation:

[ (P7°G-GV*p)da~= J.r[p

aGfGafpde (©)

on on
Substituting V?p=0 and V’G=-6(x-a) ,

and using the screening property of the Dirac 6

-function, we obtain the point expression in the

domain:

oG

p(a) = J.FG(x,a)j—p(x)dl“(x)—Irp(x)—(x,a)dr(x)

n on,
0

x

When the observation point ¢ is located
on the boundaryT', integral singularity needs to
be considered: for the L,G(x,a)g%’;(x)dr(x), G has

weak singularity (In(r)) the integral exists; for
oG 0G _0Gor 1 .

the, Lp(x)a(x,a)dr(x), a*ﬂ—;a“;whlch has

strong singularity, it is necessary to introduce

the Cauchy Principal Value (CPV) integral with

geometric coefficients c¢(a), then we obtain (Rao
et al., 2018; Rao et al., 2019):

CPV

c(a)p(a)+jr

oG

p(x) on

(x,a)dF(x)=IFG(x,a)§7p(x)dF(x)
(®)

x x

where,
1 if a€ Q (interior point)

1
— ifa€T and I is smooth at a

@={ 2 9
c(a) p €

5 ifa €T is a corner point in 2D

2.3 Discretization of BIEs

We discretize the boundary integral equation

into a system of linear equations using constant
elements. The boundary T' is divided into n
boundary elements T',(/=12,.7) as shown in
Fig. 1. Among these, nl elements belong to the
boundary I'p; and n2 boundary elements belong
to the boundary T, . For constant elements, points
are located at the midpoints of the boundary ele-
ments. The function values and normal derivative
values on the boundary are assumed constant over
each boundary element and equal to the values at
the points.

Point X;
\ / Boundary Element F]

FNB Point @;
T /' Boundary Element ]—,
y Iy
T
Fig. 1 Discretization of computational domain boundary

For point, Eq. (8) can be discretized as:

ela)p(a)+ T ()], S )ar ()= 3 2], Gl ) (4
(10)

where, @; denotes the point of boundary

elements, I', and x, represents an arbitrary point

within boundary element T';. The integrals over

the boundary elements in the equation can be com-

puted a high-order Gaussian quadrature formula.

Define:
J nx (11)

and let :—p(x,)=q(xj), then Eq. (10) can be
written as: :
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(12)

(13)

where, &, is Kronecker function, that is:

0 ix;
=t 7 (14)
L, i=j

So, Eq. (12) can be further simplified to:

Zj_:lp(xj)H,-j = Z;ﬂ("j)MU

Since n, function values and n, normal de-

(15)

rivative values have been prescribed as boundary
conditions, solving Eq. (15) therefore yields all
unknown quantities on the boundary: specifically,

n, function values and n, normal derivative values.
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2.4 Neural networks and loss function of the
BINNS

BINNSs adopt a fully connected multi-layer
perceptron (MLP) architecture, as illustrated in
Fig. 2, to approximate the unknown boundary var-
iables in boundary integral equations (BIEs). The
network consists of an input layer, hidden layers,
and an output layer, with each containing L hidden
layers, and an output layer, with each hidden layer
containing n1 neurons. The input layer receives

the midpoint coordinates of boundary element

x=(x,y), and the output layer produces the

boundary unknowns i containing pressure p or

normal derivative ¢ based on the boundary type.

Mathematically, the network mapping is
defined as: for a given input , the output of the -th
hidden layer is:

Output
Layer

=>

Fig. 2 The framework of the boundary integrated neural networks (BINN).
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=0/ (Wiz by, ), F1.2,+ L (16)

where W, and b, are the weight matrix
and bias vector of the -th layer, respectively; o,
denotes the activation function (e.g., ReLU, tanh).
The output layer maps the hidden layer features to
the boundary variables:

{p(x;®)= W 3L Thou» for Neumann boundary (17)
q(x;0)=W,_ 21 tb,.for Dirichlet boundary
L

=1

where ©={W,,b}
parameters.

represents the network

For collocation points x” on the boundary,
the residual term is defined as the mean squared
error (MSE) as follows:

L‘M:%Zj:][LE(xj,p(xj;@))—RE(xj,q(xj;('D))T (18)

where, LE(x‘/.,p(xj;(a)) and RE(xj,q(xj;e)))
refers to the left term and right term of Eq. (15).

Once the boundary variables p and ¢ are
obtained via the trained network, the pressure

at any interior point is reconstructed using the
boundary integral formula:

P(Xirna) = 2 (0 (x, )M, = p(x,)H)  (19)

This formula ensures that the internal solution
Y

) p=10MPa
100

> T

0 p=5MPa 100

(a) Computational domain geometry and boundary condi-
tions

automatically satisfies the governing PDE, lever-
aging the integral representation from potential
theory.

3 Results and Discussions

This section validates the computational
efficacy of BINNs through two examples of
increasing complexity: a rectangular reservoir
and a trapezoidal reservoir featuring geometric
singularities. The numerical experiments quanti-
tatively assess three critical aspects: (1) accuracy
of boundary-to-interior field reconstruction, (2)
robustness in handling irregular boundaries, and

(3) convergence efficiency.

3.1 Example 1

Consider a square oil reservoir region
Q=[0,100]x[0,100] with a side length of 100m.
This example investigates the steady-state sin-
gle-phase seepage flow problem without source or
sink terms. The governing equation for this system

is the Laplace equation, as follows:

V-(KVp(x))=0 (20)

11 5 =@ Boundary Points
4 [ ] Domain
12 .7 .8 .9 4 ® Interior Points
® [ ]
13 [ (] () 3
® 4 5 6 ¢
14 2
[ (] ([ ]
[ ] 1 2 3 [ ]
15 1

(b) Boundary element and interior verification point distri-
bution

Fig.3 The reservoir domain, boundary elements, and interior points in Example 1.
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where, K=10° m*/(MPa-s).

The boundary conditions for this compu-
tational domain are defined as follows: the top
and bottom boundaries are specified as constant
pressure boundaries (Dirichlet conditions), while
the left and right boundaries are treated as no-flow
boundaries (Neumann conditions), as illustrated in
Fig. 3(a).

p(x,0)=5 MPa, 0<x<100
p(x,100)=10MPa,  0<x<100
op
V(O,y):a—(O,yFO, 0<y<100 @1
n

P
v(lOO,y)=a—p(100,y)=O, 0<y<100
n

As shown in Fig. 3(b), each of the four edges
of the computational domain is discretized into 5
constant boundary elements, resulting in a total
of 20 boundary elements. Additionally, 9 interior
verification points were selected to validate the
accuracy of the numerical solution.

The analytical solution is obtained using
the separation of variables method, providing a
benchmark for accuracy assessment:

p(x,y):5+2y—0 MPa, xyE[0,100] 2)

To ensure numerical stability and that the
gradients of all parameters during BINN training
are of similar magnitude, the coordinates are
normalized by scaling them by a factor of 100.
This transformation defines new dimensionless
coordinates: x'=x/100, y'=y/100. This coordinate
transformation is purely mathematical and does
not alter the underlying physical relationships
represented by the governing equation. The ana-

lytical solution for pressure under the normalized

coordinate system (x,)') becomes the scaled
version of the original solution:

p(x'))=5+5y MPa, x,y€[0,1] (23)

For the BINN implementation, the network
structure uses a matrix X composed of the mid-
point coordinates of boundary elements as input.
The architecture consists of 2 hidden layers, each
configured with 30 neurons, employing the hy-
perbolic tangent (Tanh) function as the activation
function. The network outputs a matrix containing
the unknown function values p (pressure) and ¢
(pressure gradient) at the midpoints of boundary
elements. The network training process utilizes the
Adam optimizer with a learning rate of 10~ and
conducts over 10,000 iterations. Table 1 shows
the parameter configuration of Example 1. For
pressure calculations at interior points, boundary
integral formulas are employed to achieve the
complete solution for the entire seepage field.

Fig. 4 demonstrates the convergence behavior
of the boundary integral equation (BIE) loss
function throughout the training process. The
convergence pattern exhibits two distinct phases:
during the initial iterations (epochs 0 to 2000), the
loss decreases rapidly, indicating that the network
parameters quickly adapt to satisfy the boundary
integral equation constraints. Subsequently (epochs
2000 to 10000), the loss stabilizes and asymptoti-
cally approaches zero, demonstrating that the BINN
has successfully fitted both the boundary conditions
and governing equations, with the numerical

solution accuracy reaching a convergent state.

Table 1 Parameters of the neural networks and optimizers in Example 1

Number of hidden =~ Number of neurons Total number of Activation o
Model . . Optimizer (Adams)
layers per hidden layer parameters Function
10000 iterations,
BINN 2 30 1051 Tanh

learning rate 10
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Training Loss of BIE

0 2000 4000 G000 8000
Iteration

10000
Fig. 4 Loss function of BIE in Example 1.

Table 2 presents a comprehensive error com-
parison between BINN numerical solutions and
analytical solutions at the 9 interior verification
points. The error distribution across all verification
points shows consistent performance, with no
significant bias toward any particular region of the
domain. The maximum absolute error of 5.59x10”

MPa and the minimum error of 4.80x10™
MPa which represents less than 0.01% relative
error, indicate robust solution quality throughout
the computational domain. These results validate
the effectiveness of the BINN approach for solving
steady-state seepage flow problems in regular
geometric domains. The rapid convergence and
high accuracy achieved in this example establish
a baseline for BINN performance on problems

Table 2 Errors of the BINN solution vs. analytical
solutions at interior points

BINN  Analytical

Index Coordinates ) ] ITors
solution  solution
1 (25,25) 6.2482 6.25 1.82x10°
2 (50, 25) 6.2451 6.25 4.95x10°
3 (75, 25) 6.2469 6.25 3.15x10°
4 (25,50)  7.5023 750  2.25x10°
5 (50, 50) 7.5005 7.50 4.80x10”
6 (75, 50) 7.5014 7.50 1.40x10°
7 (25,75) 8.7556 8.75 5.59x10°
8 (50, 75) 8.7523 8.75 2.26x10°
9 (75,75) 8.7551 8.75 5.09x107

with simple geometries and well-defined boundary
conditions. The computational efficiency demon-
strated here, combined with the meshless nature of
the boundary integral approach, suggests signifi-
cant potential for extending this methodology to
more complex reservoir geometries and boundary

condition configurations.

3.2 Example 2

This example addresses the oil reservoir seep-
age flow problem with complex geometric bound-
aries, investigating the steady-state single-phase
seepage characteristics within a trapezoidal oil
reservoir region. The computational domain
represents a more realistic reservoir geometry with
an upper base width of 50m, a lower base width
of 100m, and a height of 60m (Fig. 5(a)). The
system satisfies the Laplace equation governing

conditions without internal source or sink terms.

The boundary conditions are configured to
simulate realistic reservoir flow patterns: the upper
and lower boundaries are specified as constant
pressure boundaries (Dirichlet conditions), while
the left and right boundaries are treated as no-flow
boundaries (Neumann conditions). This configu-
ration creates a pressure-driven flow from the top
boundary (15 MPa) to the bottom boundary (5
MPa), with the trapezoidal geometry introducing
complex flow patterns due to the converging
lateral boundaries (Eq. (24)).

p(x,0)=5 MPa,
p(x,60)=15 MPa,

0<x<100
25<x<75

P
v(x,y)za—i(o,y):O, 0<x<25, 0<y<60

24

0
v(x,y)za—Z(o,y)zo, 75<x<100, 0<y<60

The computational domain boundary discre-
tization employs 56 constant boundary elements
(each of 5m length) distributed across all four
edges of the trapezoid (Fig. 5(b)).
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A p=15Pa
= 4 __________
1 50 =@— Boundary Points
I Domain
1
v=0 : v=0

1
160
1
1
1
1
|
1 [ \ 4
X > T

of p=5Pa

(a) Computational domain geometry and boundary condi-
tions

(b) Boundary element and interior verification point distri-
bution

Fig. 5 The reservoir domain, boundary elements, and interior points in Example 2

To address the solution challenges introduced
by the complex trapezoidal geometry, the BINN
model adopts a significantly enhanced architecture
compared to Example 1. The network utilizes a
4-layer hidden layer structure, with each layer
configured with 60 neurons, maintaining the
hyperbolic tangent (Tanh) function as the acti-
vation function. This architectural enhancement,
increasing the total parameter count to 11,221,
is necessary to capture the more complex flow
patterns and pressure gradients introduced by
the irregular boundary geometry. The increased
network complexity reflects the fundamental
challenge of representing non-uniform flow fields
where the pressure gradients vary significantly
across the domain due to geometric effects. The
additional layers and neurons provide the network
with sufficient representational capacity to approx-
imate the intricate boundary integral relationships
inherent in problems with irregular geometries.

Table 3 comprehensively summarizes the model

parameters.

The iterative convergence process of the BIE
loss function, shown in Fig. 6, demonstrates robust
training characteristics despite the increased com-
plexity of the problem. During the initial training
phase, the loss value rapidly decreases from
approximately 12, and by 900 iterations, the loss
approaches zero and stabilizes. This convergence
pattern indicates that the enhanced network archi-
tecture successfully accommodates the additional
complexity while maintaining training stability
and achieving satisfactory equation fitting. The
convergence rate, while slightly slower than Ex-
ample 1 due to the increased problem complexity,
still demonstrates efficient training characteristics.
The stabilization of the loss function near zero
confirms that the BINN model has effectively
learned to satisfy the boundary integral equation

constraints throughout the irregular domain.

Fig. 7 presents a comprehensive comparison
of pressure field distributions between the BINN

Table 3 Parameters of the neural networks and optimizers in Example 2

Number of hidden =~ Number of neurons Total number of Activation o
Model . . Optimizer (Adams)
layers per hidden layer parameters Function
10000 iterations,
BINN 4 60 11221 Tanh

learning rate 10
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Training Loss of BIE

(N

0 2000 4000 6000 8000
Iteration

10000
Fig. 6 Loss function of BIE in Example 2.

solution and the Boundary Element Method (BEM)
reference solution. Both computational approaches
demonstrate remarkable consistency in capturing
global pressure distribution patterns and local
gradient variations. The pressure field character-
istics presented by the BEM solution (Fig. 7(a))
align closely with those predicted by the BINN
solution (Fig. 7(b)), demonstrating that BINN can
effectively handle the mathematical complexities

introduced by non-rectangular domain geometries.

The absolute error distribution analysis,
presented in Fig. 8, provides detailed insight into
the spatial accuracy characteristics of the BINN
solution. The maximum error in the entire compu-
tational domain is ~0.115 MPa, with an average
error of ~0.015 MPa and a root mean square
error of ~0.022 MPa. These error levels represent
excellent accuracy for practical engineering ap-

BEM solution

15.0

(a) BEM solution

plications, particularly considering the geometric
complexity of the problem. A notable observation
is the localized error concentration phenomenon at
both ends of the trapezoidal upper boundary, cor-
responding to the geometric discontinuity points
where the inclined side walls meet the horizontal
upper boundary. This error concentration is phys-
ically reasonable and mathematically expected,
as these locations represent singular points where
boundary conditions transition abruptly, creating
challenges for any numerical method. Importantly,
the errors in the smooth interior regions of
the domain approach zero, demonstrating that
BINN maintains high solution accuracy away
from geometric singularities. The spatial error
distribution shows that 97% of the domain exhibits
errors below 0.1 MPa, with significant errors
confined to less than 5% of the domain area near
the geometric discontinuities. The error statistics
indicate that BINN achieves numerical accuracy
comparable to the well-established BEM under
equivalent boundary conditions.

The comprehensive comparison demonstrates
that BINN achieves numerical accuracy compa-
rable to the BEM through neural network-based
global continuous mapping of boundary integral
kernels. The method successfully handles irregular
geometries while maintaining computational

efficiency and solution accuracy. The ability to

BINN solution

15.0

5.0
x, 10> m

(b) BINN solution

Fig. 7 Comparison of pressure field distributions between BINN solution and BEM solution.
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Absolute Error Distribution: BINN vs BEM Solutions

0.6

0.1151

0.5

0.0864
0.4

y,102m
o
w

0.0576

0.2

0.0288
0.1

0.0

0.0000
0.0 0.2 0.4 0.6 0.8 1.0

x,10°m

Fig. 8 Absolute error distribution of BINN solution and
BEM solution (unit: MPa)

represent complex flow patterns without traditional
mesh generation represents a significant advantage
for reservoir engineering applications where

complex geological boundaries are common.

3.3 Example 3

This example investigates seepage with
recessed boundaries and multi-well coupling. The
computational domain is an irregular polygon
with an upward-protruding notch on its bottom
edge (Fig. 9), distinct from the regular rectangular
domains in prior examples. A permeability K=500
mD is adopted, with all four boundaries set to a
constant pressure of 10 MPa (Eq. (25)). Crucially,

t 12%%%m with

one production well is placed a
intensities of -500 m®/s, simulating asymmetric

pressure fields in realistic reservoirs.

p(x,y)=15MPa, (x)ET (25)

The computational domain boundary
discretization employs 128 constant boundary
elements (each of 5Sm length) distributed across all
four edges of the irregular computational domain

(Fig. 5(b)).

To tackle the computational challenges posed
by the irregular non-convex domain and the singu-
lar pressure field induced by the production well,
the BINN model inherits the enhanced architecture
established in Example 2. The specific parameter

90

(100,140)

(180,110)

(0.0)

Fig. 9 Computational domain geometry and boundary
conditions.

(70,0)

(180,0)  (220,0)

configuration is identical to that listed in Table 3,
ensuring a consistent benchmark for evaluating
the method’s adaptability to different geometric

topologies.

Fig. 10 illustrates the convergence behavior
of the BIE loss function for Example 3. Similar to
previous examples, the training process exhibits a
two-stage characteristic: a precipitous drop in the
loss value within the first 200 iterations, followed
by a stable asymptotic approach to zero. Despite
the introduction of the source term (production
well) and the “notch” boundary singularity, the
loss function shows no significant oscillations,
stabilizing at a magnitude of O(10°). This con-
firms that the BINN effectively learns the mapping
relationship between the boundary integrals and

the internal source singularity, demonstrating

Training Loss of BIE

0 2000 4000 6000 8000
Iteration

10000

Fig. 10 Loss function of BIE in Example 2.
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BEM solution

1.4 10.0000
1.2
9.8385
1.0

€038
9.6769
= 0.6

0.4
9.5154

0.2

0.0

9.3539

0.0 05 10 15 20
x, 102 m

(a) BEM solution

Fig. 11

robust numerical stability even for domains with

recessed boundaries.

Fig. 11 compares the pressure field
distributions obtained from the BINN solution and
the BEM reference solution. Visually, the BINN
solution (Fig. 11(b)) accurately reconstructs the
radial flow pattern and the significant pressure
drop cone surrounding the production well,
showing high consistency with the BEM result
(Fig. 11(a)). The method also correctly captures
the pressure gradients near the complex re-entrant

corners of the domain.

The absolute error distribution analysis,
detailed in Fig. 12, provides a rigorous quanti-
tative assessment of the BINN solution's spatial
fidelity. The method achieves a global Average
Error of approximately 0.0020 MPa and an RMSE
of ~0.0045 MPa. The Maximum Error recorded
is ~0.0323 MPa. When normalized against the
characteristic reservoir pressure of 10 MPa, this
maximum deviation corresponds to a relative
error of merely 0.32%, while the domain-averaged
relative error is negligible at 0.02%. As observed
in the error map, the peak errors are strictly
localized near the polygon vertices, while the error
in the vast majority of the bulk domain remains
negligible.

solution and BEM solution (unit: MPa)

BINN solution

14 10.0000
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(b) BINN solution

Comparison of pressure field distributions between BINN solution and BEM solution.

This example validates the potential of
BINNs in handling seepage problems with
recessed boundaries and multi-well coupling. By
integrating the fundamental solution for point
sources into the boundary integral formulation,
BINN successfully solved the pressure field in a
domain with internal singularities. The results,
characterized by low error metrics and accurate
capture of the pressure funnel, demonstrate
that the proposed method possesses significant
potential for simulating realistic reservoirs with
complex well patterns and irregular geological

boundaries.

4 Conclusion

This work establishes Boundary-Integral
Neural Networks (BINNs) as a transformative
methodology for reservoir flow simulation,

Absolute Error Distribution: BINN vs BEM Solutions
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Fig. 12— Absolute error distribution of BINN
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demonstrating their efficacy in solving two-di-
mensional single-phase seepage problems.
BINNs fundamentally address key challenges of
conventional approaches by unifying BIEs with
deep learning: they eliminate spatial discretization
meshes required by FEM/FVM and overcome
the computational inefficiency of PINNs in large
domains through dimensionality reduction. Neural
networks learn only boundary variables, while
interior solutions are analytically reconstructed
via Green’s functions, ensuring exact satisfaction
of boundary conditions and inherent handling of

geometric singularities.

Validation on rectangular, trapezoidal and and
irregular non-convex reservoirs confirms BINNs’
superior performance. In regular domains, errors
as low as O(10—4) MPa are achieved with minimal
training. For geometrically complex trapezoidal
cases with pressure singularities, BINNs match
BEM accuracy (~0.115 MPa max error) using
moderate-sized networks. Crucially, the successful
application to production well simulation in
domains with recessed boundaries highlights
BINNSs’ distinct advantage in analytically handling
internal singularities via Green’s functions,
demonstrating remarkable robustness where
traditional methods often require extensive mesh
refinement.demonstrating robustness to irregular
boundaries. The framework’s rapid convergence
and boundary-only sampling highlight its compu-
tational efficiency and scalability.

BINNSs thus offer a paradigm ssshift toward
meshless, boundary-focused reservoir simulation.
Future extensions to multiphase flow and fractured
reservoirs are warranted, leveraging BINNs’
inherent capacity for discontinuous physics, which
holds significant potential to advance high-fidelity,
computationally efficient forecasting in subsurface

engineering.
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