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Abstract:  This study pioneers the application of Boundary-Integral Neural Networks (BINNs) to sub-
surface flow simulation, addressing steady-state single-phase flow governed by Laplace-type equations 
in hydrocarbon reservoirs. BINNs synergistically integrate boundary integral equations (BIEs) with 
deep learning to overcome limitations of traditional mesh-based methods and Physics-Informed Neural 
Networks (PINNs). By leveraging Green’s functions, BINNs transform partial differential equations 
into boundary-only formulations, where neural networks exclusively approximate boundary unknowns 
(pressure/flux), and interior solutions are reconstructed analytically. This approach achieves intrinsic di-
mensionality reduction, eliminating spatial domain discretization while ensuring mathematical consist-
ency through exact boundary condition enforcement. Numerical validation demonstrates BINNs’ com-
putational advantages: In a rectangular reservoir, BINNs achieve sub-0.01% relative error (4.80×10−4 
MPa) at interior points. For a complex trapezoidal reservoir with geometric singularities, BINNs attain 
Boundary Element Method (BEM)-comparable accuracy (max error ~0.115MPa) without specialized 
singularity treatments. Furthermore, in a challenging non-convex domain featuring recessed bounda-
ries and internal production wells, BINNs effectively resolve the pressure singularities near wellbores, 
achieving high-fidelity reconstruction with a maximum relative error of 0.32%. The method’s efficien-
cy is evidenced by rapid convergence with minimal boundary sampling and moderate network sizes. 
BINNs provide a robust, meshless paradigm for reservoir-scale simulation, effectively handling irregular 
geometries while maintaining high fidelity and scalability, which uncovers its remarkable computational 
capabilities in the realm of single-phase flow, and offers an inaugural investigation and benchmark for 
its prospective extensive utilization in numerical reservoir simulations.
Keywords:  Deep learning; Boundary integral  equations (BIEs); Physics-informed neural networks 
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1 Introduction

As the demand for increased accuracy and 
efficiency in reservoir flow simulation during hy-
drocarbon exploration and development continues 
to grow, traditional numerical methods such as the 
Finite Element Method (FEM) and Finite Volume 
Method (FVM) face significant challenges in 
solving the partial differential equations (PDEs) 
that describe subsurface flow processes. These 
approaches rely on complex spatial discretization 
meshes, which pose difficulties when handling 
intricate geometries or highly nonlinear problems, 
often resulting in substantial computational costs 
and mesh generation complexities, while also be-
ing prone to numerical dissipation issues (Hughes, 
2003; LeVeque, 2002; Rao et al., 2024a).

Recently, deep learning frameworks exem-
plified by Physics-Informed Neural Networks 
(PINNs) have emerged, embedding physical 
laws as residuals within loss functions to enable 
meshless PDE solutions (Raissi et al., 2019; Rao 
et al., 2025a; Rao et al., 2025b;). Leveraging the 
function approximation capabilities of neural 
networks, PINNs directly learn the solution 
mappings from data and governing equations, 
theoretically circumventing the dependency on 
spatial discretization meshes characteristic of 
traditional methods (Liu et al., 2025).

However, PINNs encounter limitations when 
applied to reservoir-scale flow problems. Their 
global sampling strategies lead to exponential 
increases in training costs as the computational 
domain expands, and they often suffer from 
reduced accuracy near boundary singularities, 
such as wellbore regions (Krishnapriyan et al., 
2021; Wang et al., 2021). To address these issues, 

Boundary Integral Neural Networks (BINNs) 
have been developed (Lin et al., 2023; Sun et al., 
2023). BINNs integrate the mathematical core 
of Boundary Integral Equations (BIE) with deep 
learning architectures, transforming PDEs into 
boundary-only integral equations via Green’s 
functions (Brebbia et al., 2012). Within this 
framework, neural networks are tasked solely with 
learning boundary unknowns—such as potential 
functions or their normal derivatives—while 
the solution within the domain is reconstructed 
through boundary integrals.

Compared to the global sampling-based 
solution paradigm of PINNs, BINNs demonstrate 
distinct advantages in efficiency and robustness: 
1) BINNs achieve dimensionality reduction by 
solving BIEs, requiring only boundary sampling 
and thus significantly enhancing scalability for 
large-scale reservoir simulations; 2) they impose 
boundary conditions analytically, overcoming the 
approximation errors associated with PINN penal-
ty methods and ensuring mathematical consistency 
of the solution; 3) the inherent Green’s function 
kernel in boundary integral equations naturally 
adapts to fundamental solution characteristics, 
enabling accurate capture of solution behavior in 
regions with singularities, such as well points or 
crack tips, without specialized treatment.

In recent years, substantial progress has been 
made in the theoretical development and practical 
applications of BINNs. Lin et al. (2023) introduced 
the initial BINet framework, combining boundary 
integral equations with deep learning, utilizing 
potential theory to convert PDEs into boundary 
integral forms, and proving network convergence 
via neural tangent kernel theory. Zhang et al. 
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(2022) pioneered the integration of NURBS 
boundary parameterization and Telles’ singularity 
treatment strategies into BINNs, validating their 
effectiveness on Laplace equation benchmarks. 
Sun et al. (2023) systematically demonstrated the 
dimensionality reduction benefits of boundary 
integral-based BINNs in transferring unknowns 
from the domain to the boundary, simplifying 
loss function design and improving computational 
efficiency. Concurrently, operator learning ap-
proaches driven by boundary integral equations 
have advanced, exemplified by Meng et al. (2024), 
who developed BI-DeepONet and BI-TDONet 
models capable of cross-domain generalization, 
enabling rapid inference of Laplace and acoustic 
scattering problems with a single training session. 
Dai et al. (2024) proposed the BI-GreenNet model, 
which extends the dimensionality reduction concept 
to Navier-Stokes equations through a boundary 
integral weight-sharing reconstruction mechanism. 
The application scope of BINNs has since expanded 
to elasticity and acoustics. Damiano and van Wa-
terschoot (2025) employed the Physically Informed 
Boundary Integral Network (PIBI-Net), a variant of 
BINN, for acoustic field reconstruction, achieving 
high robustness with boundary-only data. Zhang et 
al. (2024) first applied BINNs to two-dimensional 
elasticity and piezoelectric problems, demonstrating 
that boundary discretization alone suffices to ensure 
the automatic satisfaction of governing equations.

Despite these advances, the application of 
BINNs to subsurface flow modeling remains un-
explored. This study aims to investigate the foun-
dational application of BINNs in two-dimensional 
single-phase reservoir flow problems, constructing 
a boundary integral-based neural network model 
for flow simulation, thereby providing a novel 
methodological approach for numerical modeling 
in hydrocarbon reservoirs.

2 Methodology

2.1	The governing equation

The  seepage  govern ing  equa t ions  in 
subsurface porous media primarily consists of 
the fluid mass conservation equation and Darcy’s 
law, which is derived from physical experiments. 
Assuming steady flow without source or sink 
terms, the mass conservation equation for the fluid 
is given by:

0∇⋅ =v (1)

where v is the seepage velocity of the fluid, 

and in two dimensions, ( ),
T

x yv v=v .

Darcy’s law is described as:

K p= − ∇v (2)

where K k
µ

=  is the hydraulic conductivity 
(assumed to be a constant scalar, isotropic), p is 
the fluid pressure. 

Substituting Eq. (2) into Eq. (1) yields an 
equation solely in terms of pressure p:

(3)

In the absence of internal sources or sinks, 
as shown in Eq. (4), this seepage problem 
generally has both Dirichlet boundary conditions 
representing constant pressure boundaries and 
Neumann boundary conditions representing sealed 
or constant flow rates (Rao et al., 2022; Rao et al., 
2024b).

Dirichlet boundary condition: 

( ) ( ) ,  DBp p= ∈Γx x x
Neumann boundary condition: 
( ) ( )K ,  NBp= − ∇ ∈Γv x x x

(4)

where ( ) p x  and ( )p∇ x  represents the known 
pressure and pressure gradient vector at point x ,  
and DBΓ  is the Dirichlet boundary, NBΓ  is the 
Neumann boundary.
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2.2	Boundary integral equations (BIEs)

The fundamental solution of the two-dimen-
sional Laplace equation is:

( ) ( )
1 1,

2 ln
G

rπ
=x a (5)

where r = −‖‖x a  is the Euclidean distance 
between the source point a  and the field point x .

After incorporating the fundamental solution, 
the governing equations can be transformed into 
boundary integral form based on Green’s second 
equation:

(6)

Substituting  and ( )2G δ∇ = − −x a  , 
and  using the screening property of the Dirac δ
-function, we obtain the point expression in the 
domain:

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
x x

p Gp G d p d
n nΓ Γ

∂ ∂
= Γ − Γ

∂ ∂∫ ∫a x a x x x x a x

(7)

When the observation point ξ  is located 
on the boundaryΓ , integral singularity needs to 
be considered: for the , G has 
weak singularity ( ( )ln r ) the integral exists; for 

the, ( ) ( ) ( ),
x

Gp d
nΓ

∂
Γ

∂∫ x x a x , 
1G G r

n r n r
∂ ∂ ∂

= ∝
∂ ∂ ∂ which has 

strong singularity, it is necessary to introduce 
the Cauchy Principal Value (CPV) integral with 

geometric coefficients ( )c a , then we obtain (Rao 
et al., 2018; Rao et al., 2019):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
CPV

x x

G pc p p d G d
n nΓ Γ

∂ ∂
+ Γ = Γ

∂ ∂∫ ∫a a x x a x x a x x

(8)
where, 

(9)

2.3	Discretization of BIEs

We discretize the boundary integral equation 

into a system of linear equations using constant 
elements. The boundary Γ  is divided into n 

boundary elements ( )1,2, ,j j nΓ =   as shown in 
Fig. 1. Among these, n1 elements belong to the 
boundary DBΓ  and n2 boundary elements belong 
to the boundary NBΓ . For constant elements, points 
are located at the midpoints of the boundary ele-
ments. The function values and normal derivative 
values on the boundary are assumed constant over 
each boundary element and equal to the values at 
the points.

For point, Eq. (8) can be discretized as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
, ,

j j

n n
j j j jj j

x x

G pc p p d G d
n n= =Γ Γ

∂ ∂
+ Γ = Γ

∂ ∂∑ ∑∫ ∫i i i ia a x x a x x x a x

(10)

where, ia  denotes the point of boundary 
elements, iΓ  and jx  represents an arbitrary point 
within boundary element jΓ . The integrals over 
the boundary elements in the equation can be com-
puted a high-order Gaussian quadrature formula.

Define:

( ) ( ),ˆ
j

ij j
x

GH d
nΓ

∂
= Γ

∂∫ ix a x  

( ) ( ),
j

ij jM G d
Γ

= Γ∫ ix a x
(11)

and let ( ) ( )j j
x

p q
n
∂

=
∂

x x , then Eq. (10) can be 
written as:

Fig. 1  Discretization of computational domain boundary
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( ) ( ) ( ) ( )1 1
ˆn n

j ij j ijj j
c p p H q M

= =
+ =∑ ∑i ia a x x (12)

where,
1ˆ
2ij ij ijH H δ= + (13)

where, ijδ  is Kronecker function, that is:

0,
{
1,ij

i j
i j

δ
≠

=
=

(14)

So, Eq. (12) can be further simplified to:

( ) ( )1 1

n n
j ij j ijj j

p H q M
= =

=∑ ∑x x (15)

Since n1 function values and n2 normal de-
rivative values have been prescribed as boundary 
conditions, solving Eq. (15) therefore yields all 
unknown quantities on the boundary: specifically,  
n2 function values and n1 normal derivative values.

2.4	Neural networks and loss function of the 
BINNs

BINNs adopt a fully connected multi-layer 
perceptron (MLP) architecture, as illustrated in 
Fig. 2, to approximate the unknown boundary var-
iables in boundary integral equations (BIEs). The 
network consists of an input layer, hidden layers, 
and an output layer, with each containing L hidden 
layers, and an output layer, with each hidden layer 
containing n1 neurons. The input layer receives 
the midpoint coordinates of boundary element 

( ),x y=x , and the output layer produces the 
boundary unknowns û  containing pressure p̂  or 
normal derivative q̂  based on the boundary type.

Mathematically, the network mapping is 
defined as: for a given input , the output of the -th 
hidden layer is:

Fig. 2  The framework of the boundary integrated neural networks (BINNs).
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(16)

where lW  and lb  are the weight matrix 
and bias vector of the -th layer, respectively; lσ  
denotes the activation function (e.g., ReLU, tanh). 
The output layer maps the hidden layer features to 
the boundary variables:

(17)

where { } 1
, L

l l l=
Θ = W b  represents the network 

parameters.

For collocation points nx  on the boundary, 
the residual term is defined as the mean squared 
error (MSE) as follows:

( )( ) ( )( ) 2

1

1 , ; , ;n
BIE j j j jj

LE p RE q
n =

 = Θ − Θ ∑ x x x x (18)

where, ( )( ), ;j jLE p Θx x  and ( )( ), ;j jRE q Θx x  
refers to the left term and right term of Eq. (15).

Once the boundary variables p̂  and q̂  are 
obtained via the trained network,  the pressure 
at any interior point  is reconstructed using the 
boundary integral formula:

( ) ( ) ( )1
( )n

internal j ij j ijj
p q M p H

=
= −∑x x x (19)

This formula ensures that the internal solution 

automatically satisfies the governing PDE, lever-
aging the integral representation from potential 
theory.

3 Results and Discussions

This section validates the computational 
efficacy of BINNs through two examples of 
increasing complexity: a rectangular reservoir 
and a trapezoidal reservoir featuring geometric 
singularities. The numerical experiments quanti-
tatively assess three critical aspects: (1) accuracy 
of boundary-to-interior field reconstruction, (2) 
robustness in handling irregular boundaries, and 
(3) convergence efficiency. 

3.1	Example 1

Consider a square oil reservoir region 

 with a side length of 100m. 
This example investigates the steady-state sin-
gle-phase seepage flow problem without source or 
sink terms. The governing equation for this system 
is the Laplace equation, as follows:

( )( )K 0p∇⋅ ∇ =x (20)

Fig. 3  The reservoir domain, boundary elements, and interior points in Example 1.

(a) Computational domain geometry and boundary condi-
tions

(b) Boundary element and interior verification point distri-
bution
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where, K=10-6 m2/(MPa·s).

The boundary conditions for this compu-
tational domain are defined as follows: the top 
and bottom boundaries are specified as constant 
pressure boundaries (Dirichlet conditions), while 
the left and right boundaries are treated as no-flow 
boundaries (Neumann conditions), as illustrated in 
Fig. 3(a).

(21)

As shown in Fig. 3(b), each of the four edges 
of the computational domain is discretized into 5 
constant boundary elements, resulting in a total 
of 20 boundary elements. Additionally, 9 interior 
verification points were selected to validate the 
accuracy of the numerical solution.

The analytical solution is obtained using 
the separation of variables method, providing a 
benchmark for accuracy assessment:

(22)

To ensure numerical stability and that the 
gradients of all parameters during BINN training 
are of similar magnitude, the coordinates are 
normalized by scaling them by a factor of 100. 
This transformation defines new dimensionless 
coordinates: /100x x′ = , /100y y′ = . This coordinate 
transformation is purely mathematical and does 
not alter the underlying physical relationships 
represented by the governing equation. The ana-

lytical solution for pressure under the normalized 

coordinate system ( ),x y′ ′  becomes the scaled 
version of the original solution:

(23)

For the BINN implementation, the network 
structure uses a matrix x  composed of the mid-
point coordinates of boundary elements as input. 
The architecture consists of 2 hidden layers, each 
configured with 30 neurons, employing the hy-
perbolic tangent (Tanh) function as the activation 
function. The network outputs a matrix containing 
the unknown function values p̂  (pressure) and q̂  
(pressure gradient) at the midpoints of boundary 
elements. The network training process utilizes the 
Adam optimizer with a learning rate of 10-3 and 
conducts over 10,000 iterations. Table 1 shows 
the parameter configuration of Example 1. For 
pressure calculations at interior points, boundary 
integral formulas are employed to achieve the 
complete solution for the entire seepage field.

Fig. 4 demonstrates the convergence behavior 
of the boundary integral equation (BIE) loss 
function throughout the training process. The 
convergence pattern exhibits two distinct phases: 
during the initial iterations (epochs 0 to 2000), the 
loss decreases rapidly, indicating that the network 
parameters quickly adapt to satisfy the boundary 
integral equation constraints. Subsequently (epochs 
2000 to 10000), the loss stabilizes and asymptoti-
cally approaches zero, demonstrating that the BINN 
has successfully fitted both the boundary conditions 
and governing equations, with the numerical 
solution accuracy reaching a convergent state.

Table 1 Parameters of the neural networks and optimizers in Example 1

Model
Number of hidden 

layers
Number of neurons 

per hidden layer
Total number of 

parameters
Activation 
Function

Optimizer (Adams)

BINN 2 30 1051 Tanh
10000 iterations, 
learning rate 10-3
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Table 2 presents a comprehensive error com-
parison between BINN numerical solutions and 
analytical solutions at the 9 interior verification 
points. The error distribution across all verification 
points shows consistent performance, with no 
significant bias toward any particular region of the 
domain. The maximum absolute error of 5.59×10-3 

 MPa and the minimum error of 4.80×10-4  
MPa which represents less than 0.01% relative 
error, indicate robust solution quality throughout 
the computational domain. These results validate 
the effectiveness of the BINN approach for solving 
steady-state seepage flow problems in regular 
geometric domains. The rapid convergence and 
high accuracy achieved in this example establish 
a baseline for BINN performance on problems 

with simple geometries and well-defined boundary 
conditions. The computational efficiency demon-
strated here, combined with the meshless nature of 
the boundary integral approach, suggests signifi-
cant potential for extending this methodology to 
more complex reservoir geometries and boundary 
condition configurations.

3.2	Example 2

This example addresses the oil reservoir seep-
age flow problem with complex geometric bound-
aries, investigating the steady-state single-phase 
seepage characteristics within a trapezoidal oil 
reservoir region. The computational domain 
represents a more realistic reservoir geometry with 
an upper base width of 50m, a lower base width 
of 100m, and a height of 60m (Fig. 5(a)). The 
system satisfies the Laplace equation governing 
conditions without internal source or sink terms.

The boundary conditions are configured to 
simulate realistic reservoir flow patterns: the upper 
and lower boundaries are specified as constant 
pressure boundaries (Dirichlet conditions), while 
the left and right boundaries are treated as no-flow 
boundaries (Neumann conditions). This configu-
ration creates a pressure-driven flow from the top 
boundary (15 MPa) to the bottom boundary (5 
MPa), with the trapezoidal geometry introducing 
complex flow patterns due to the converging 
lateral boundaries (Eq. (24)).

(24)

The computational domain boundary discre-
tization employs 56 constant boundary elements 
(each of 5m length) distributed across all four 
edges of the trapezoid (Fig. 5(b)). 

Fig. 4  Loss function of BIE in Example 1.

Table 2 Errors of the BINN solution vs. analytical  
solutions at interior points

Index Coordinates
BINN 

solution
Analytical 
solution

Errors

1 (25, 25) 6.2482 6.25 1.82×10-3

2 (50, 25) 6.2451 6.25 4.95×10-3

3 (75, 25) 6.2469 6.25 3.15×10-3

4 (25, 50) 7.5023 7.50 2.25×10-3

5 (50, 50) 7.5005 7.50 4.80×10-3

6 (75, 50) 7.5014 7.50 1.40×10-3

7 (25, 75) 8.7556 8.75 5.59×10-3

8 (50, 75) 8.7523 8.75 2.26×10-3

9 (75, 75) 8.7551 8.75 5.09×10-3
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To address the solution challenges introduced 
by the complex trapezoidal geometry, the BINN 
model adopts a significantly enhanced architecture 
compared to Example 1. The network utilizes a 
4-layer hidden layer structure, with each layer 
configured with 60 neurons, maintaining the 
hyperbolic tangent (Tanh) function as the acti-
vation function. This architectural enhancement, 
increasing the total parameter count to 11,221, 
is necessary to capture the more complex flow 
patterns and pressure gradients introduced by 
the irregular boundary geometry. The increased 
network complexity reflects the fundamental 
challenge of representing non-uniform flow fields 
where the pressure gradients vary significantly 
across the domain due to geometric effects. The 
additional layers and neurons provide the network 
with sufficient representational capacity to approx-
imate the intricate boundary integral relationships 
inherent in problems with irregular geometries. 
Table 3 comprehensively summarizes the model 

parameters.

The iterative convergence process of the BIE 
loss function, shown in Fig. 6, demonstrates robust 
training characteristics despite the increased com-
plexity of the problem. During the initial training 
phase, the loss value rapidly decreases from 
approximately 12, and by 900 iterations, the loss 
approaches zero and stabilizes. This convergence 
pattern indicates that the enhanced network archi-
tecture successfully accommodates the additional 
complexity while maintaining training stability 
and achieving satisfactory equation fitting. The 
convergence rate, while slightly slower than Ex-
ample 1 due to the increased problem complexity, 
still demonstrates efficient training characteristics. 
The stabilization of the loss function near zero 
confirms that the BINN model has effectively 
learned to satisfy the boundary integral equation 
constraints throughout the irregular domain.

Fig. 7 presents a comprehensive comparison 
of pressure field distributions between the BINN 

Fig. 5  The reservoir domain, boundary elements, and interior points in Example 2

(a) Computational domain geometry and boundary condi-
tions

(b) Boundary element and interior verification point distri-
bution

Table 3 Parameters of the neural networks and optimizers in Example 2

Model
Number of hidden 

layers
Number of neurons 

per hidden layer
Total number of 

parameters
Activation 
Function

Optimizer (Adams)

BINN 4 60 11221 Tanh
10000 iterations, 
learning rate 10-3
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solution and the Boundary Element Method (BEM) 
reference solution. Both computational approaches 
demonstrate remarkable consistency in capturing 
global pressure distribution patterns and local 
gradient variations. The pressure field character-
istics presented by the BEM solution (Fig. 7(a)) 
align closely with those predicted by the BINN 
solution (Fig. 7(b)), demonstrating that BINN can 
effectively handle the mathematical complexities 
introduced by non-rectangular domain geometries.

The absolute error distribution analysis, 
presented in Fig. 8, provides detailed insight into 
the spatial accuracy characteristics of the BINN 
solution. The maximum error in the entire compu-
tational domain is ~0.115 MPa, with an average 
error of ~0.015 MPa and a root mean square 
error of ~0.022 MPa. These error levels represent 
excellent accuracy for practical engineering ap-

plications, particularly considering the geometric 
complexity of the problem. A notable observation 
is the localized error concentration phenomenon at 
both ends of the trapezoidal upper boundary, cor-
responding to the geometric discontinuity points 
where the inclined side walls meet the horizontal 
upper boundary. This error concentration is phys-
ically reasonable and mathematically expected, 
as these locations represent singular points where 
boundary conditions transition abruptly, creating 
challenges for any numerical method. Importantly, 
the errors in the smooth interior regions of 
the domain approach zero, demonstrating that 
BINN maintains high solution accuracy away 
from geometric singularities. The spatial error 
distribution shows that 97% of the domain exhibits 
errors below 0.1 MPa, with significant errors 
confined to less than 5% of the domain area near 
the geometric discontinuities. The error statistics 
indicate that BINN achieves numerical accuracy 
comparable to the well-established BEM under 
equivalent boundary conditions.

The comprehensive comparison demonstrates 
that BINN achieves numerical accuracy compa-
rable to the BEM through neural network-based 
global continuous mapping of boundary integral 
kernels. The method successfully handles irregular 
geometries while maintaining computational 
efficiency and solution accuracy. The ability to 

Fig. 6  Loss function of BIE in Example 2.

Fig. 7   Comparison of pressure field distributions between BINN solution and BEM solution.
(a) BEM solution (b) BINN solution
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represent complex flow patterns without traditional 
mesh generation represents a significant advantage 
for reservoir engineering applications where 
complex geological boundaries are common. 

3.3	Example 3

This example investigates seepage with 
recessed boundaries and multi-well coupling. The 
computational domain is an irregular polygon 
with an upward-protruding notch on its bottom 
edge (Fig. 9), distinct from the regular rectangular 
domains in prior examples. A permeability K=500 
mD is adopted, with all four boundaries set to a 
constant pressure of 10 MPa (Eq. (25)). Crucially, 
one production well is placed at [120,80]m with 
intensities of -500 m2/s, simulating asymmetric 
pressure fields in realistic reservoirs. 

(25)

The  computa t ional  domain  boundary 
discretization employs 128 constant boundary 
elements (each of 5m length) distributed across all 
four edges of the irregular computational domain 
(Fig. 5(b)). 

To tackle the computational challenges posed 
by the irregular non-convex domain and the singu-
lar pressure field induced by the production well, 
the BINN model inherits the enhanced architecture 
established in Example 2. The specific parameter 

configuration is identical to that listed in Table 3, 
ensuring a consistent benchmark for evaluating 
the method’s adaptability to different geometric 
topologies.

Fig. 10 illustrates the convergence behavior 
of the BIE loss function for Example 3. Similar to 
previous examples, the training process exhibits a 
two-stage characteristic: a precipitous drop in the 
loss value within the first 200 iterations, followed 
by a stable asymptotic approach to zero. Despite 
the introduction of the source term (production 
well) and the “notch” boundary singularity, the 
loss function shows no significant oscillations, 
stabilizing at a magnitude of O(10−3). This con-
firms that the BINN effectively learns the mapping 
relationship between the boundary integrals and 
the internal source singularity, demonstrating 

Fig. 8  Absolute error distribution of BINN solution and 
BEM solution (unit: MPa) Fig. 9  Computational domain geometry and boundary 

conditions.

Fig. 10  Loss function of BIE in Example 2.
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robust numerical stability even for domains with 
recessed boundaries.

F ig .  11  compares  the  p res su re  f i e ld 
distributions obtained from the BINN solution and 
the BEM reference solution. Visually, the BINN 
solution (Fig. 11(b)) accurately reconstructs the 
radial flow pattern and the significant pressure 
drop cone surrounding the production well, 
showing high consistency with the BEM result 
(Fig. 11(a)). The method also correctly captures 
the pressure gradients near the complex re-entrant 
corners of the domain.

The absolute error distribution analysis, 
detailed in Fig. 12, provides a rigorous quanti-
tative assessment of the BINN solution's spatial 
fidelity. The method achieves a global Average 
Error of approximately 0.0020 MPa and an RMSE 
of ~0.0045 MPa. The Maximum Error recorded 
is ~0.0323 MPa. When normalized against the 
characteristic reservoir pressure of 10 MPa, this 
maximum deviation corresponds to a relative 
error of merely 0.32%, while the domain-averaged 
relative error is negligible at 0.02%. As observed 
in the error map, the peak errors are strictly 
localized near the polygon vertices, while the error 
in the vast majority of the bulk domain remains 
negligible.

solution and BEM solution (unit: MPa)

This example validates the potential of 
BINNs in handling seepage problems with 
recessed boundaries and multi-well coupling. By 
integrating the fundamental solution for point 
sources into the boundary integral formulation, 
BINN successfully solved the pressure field in a 
domain with internal singularities. The results, 
characterized by low error metrics and accurate 
capture of the pressure funnel, demonstrate 
that the proposed method possesses significant 
potential for simulating realistic reservoirs with 
complex well patterns and irregular geological 
boundaries.

4 Conclusion

This work establishes Boundary-Integral 
Neural Networks (BINNs) as a transformative 
methodology for reservoir flow simulation, 

Fig. 11   Comparison of pressure field distributions between BINN solution and BEM solution.
(a) BEM solution (b) BINN solution

Fig. 12— Absolute error distribution of BINN 
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demonstrating their efficacy in solving two-di-
mensional single-phase seepage problems. 
BINNs fundamentally address key challenges of 
conventional approaches by unifying BIEs with 
deep learning: they eliminate spatial discretization 
meshes required by FEM/FVM and overcome 
the computational inefficiency of PINNs in large 
domains through dimensionality reduction. Neural 
networks learn only boundary variables, while 
interior solutions are analytically reconstructed 
via Green’s functions, ensuring exact satisfaction 
of boundary conditions and inherent handling of 
geometric singularities.

Validation on rectangular, trapezoidal and and 
irregular non-convex reservoirs confirms BINNs’ 
superior performance. In regular domains, errors 
as low as Ο(10−4) MPa are achieved with minimal 
training. For geometrically complex trapezoidal 
cases with pressure singularities, BINNs match 
BEM accuracy (~0.115 MPa max error) using 
moderate-sized networks. Crucially, the successful 
application to production well simulation in 
domains with recessed boundaries highlights 
BINNs’ distinct advantage in analytically handling 
internal singularities via Green’s functions, 
demonstrating remarkable robustness where 
traditional methods often require extensive mesh 
refinement.demonstrating robustness to irregular 
boundaries. The framework’s rapid convergence 
and boundary-only sampling highlight its compu-
tational efficiency and scalability.

BINNs thus offer a paradigm ssshift toward 
meshless, boundary-focused reservoir simulation. 
Future extensions to multiphase flow and fractured 
reservoirs are warranted, leveraging BINNs’ 
inherent capacity for discontinuous physics, which 
holds significant potential to advance high-fidelity, 
computationally efficient forecasting in subsurface 
engineering.
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