Porous media oil-water two-phase fluid-solid coupling is critical for oil-gas exploitation efficiency and environmental protection, but traditional mesh-based methods (FDM, FEM, FVM) suffer from mesh generation difficulties, poor dynamic adaptability, and numerical dissipation. The Generalized Finite Difference Method (GFDM), a promising meshless approach, offers a solution. This review synthesizes research progress on upwind GFDM in this coupling problem. It first sorts the evolution of porous media fluid-solid coupling theory (from Terzaghi’s to multi-physics extensions) and summarizes mesh-based/meshless methods, focusing on GFDM’s development and cross-field applications. It then analyzes how upwind-GFDM integration enhances convection-dominated flow stability/accuracy, addressing traditional meshless upwind challenges. Key gaps are identified: limited GFDM use in fractured porous media, unoptimized node layout/influence domains, and insufficient AI integration. Finally, the review concludes upwind GFDM provides a novel technical pathway for complex coupling problems, laying a foundation for meshless porous media simulators. It outlines future directions (fractured reservoir expansion, parameter optimization, AI fusion) to improve exploitation efficiency and environmental protection.
Keywords: Closed-loop optimization; History matching; Production optimization; Optimization algorithm
Full Text
Download the full text PDF for viewing and using it according to the license of this paper.
References
Terzaghi, K. (1943). Theoretical soil mechanics.
Biot, M. A. (1941). General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2), 155-164.
Biot, M. A. (1956). General solutions of the equations of elasticity and consolidation for a porous material.
Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182-185.
Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482-1498.
Lubinski, A. (1954). The theory of Elasticity for porous bodies displaying a strong pore structure. In Proc. 2nd US National Congress of Applied Mechanics.
Geertsma, J. (1957). A remark on the analogy between thermoelasticity and the elasticity of saturated porous media. Journal of the Mechanics and Physics of Solids, 6(1), 13-16.
Zienkiewicz, O. C., & Shiomi, T. (1984). Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 8(1), 71-96.
Oda, M. (1986). An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resources Research, 22(13), 1845-1856.
Savage, W. Z., & Braddock, W. A. (1991). A model for hydrostatic consolidation of Pierre shale. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 28, No. 5, pp. 345-354). Pergamon.
Li, X., Zienkiewicz, O. C., & Xie, Y. M. (1990). A numerical model for immiscible two‐phase fluid flow in a porous medium and its time domain solution. International Journal for Numerical Methods in Engineering, 30(6), 1195-1212.
Han, X. H., & Li, X. K. (2004). An improved stable step-by-step algorithm for finite element analysis of saturated soil dynamics. Chinese Journal of Computational Mechanics, 21(3), 277-284.
Li, X. K. (1999). Numerical methods for nonlinear coupling problems in porous media. Journal of Dalian University of Technology, 39(2), 6.
Li, X. K., Liu, Z. J., & Yan, Y. (2003). Mixed finite element method and strain localization analysis under finite strain in saturated porous media. Acta Mechanica Sinica, 35(6), 668-676.
Zhang, H. W., Zhong, W. X., & Qian, L. X. (1991). An effective algorithm for soil consolidation analysis. Computational Structural Mechanics and Its Applications, 8(4), 7.
Zhang, H. W., & Zhong, W. X. (1993). Algorithm research on saturated soil consolidation analysis. Mechanics in Engineering, 15(1), 3.
Lewis, R. W., & Schrefler, B. A. (1987). The finite element method in the deformation and consolidation of porous media.
Lewis, R. W., Roberts, P. J., & Schrefler, B. A. (1989). Finite element modelling of two-phase heat and fluid flow in deforming porous media. Transport in Porous Media, 4, 319-334.
Lewis, R. W., & Sukirman, Y. (1993). Finite element modelling of three‐phase flow in deforming saturated oil reservoirs. International Journal for Numerical and Analytical Methods in Geomechanics, 17(8), 577-598.
Wong, S. K. (1988). Analysis and implications of in-situ stress changes during steam stimulation of Cold Lake oil sands. SPE Reservoir Engineering, 3(01), 55-61.
Wong, R. C. K., Samieh, A. M., & Kuhlemeyer, R. L. (1994). Oil sand strength parameters at low effective stress: Its effects on sand production. Journal of Canadian Petroleum Technology, 33(05).
Settari, A., Kry, P. R., & Yee, C. T. (1989). Coupling of fluid flow and soil behaviour to model injection into uncemented oil sands. Journal of Canadian Petroleum Technology, 28(01).
Tortike, W. S., & Ali, S. M. F. (1987). A framework for multiphase nonisothermal fluid flow in a deforming heavy oil reservoir. In SPE Reservoir Simulation Conference (SPE-16030-MS). SPE.
Tortike, W. S., & Ali, S. M. F. (1991). Prediction of oil sand failure due to steam-induced stresses. Journal of Canadian Petroleum Technology, 30(01).
Tortike, W. S., & Ali, S. M. F. (1993). Reservoir simulation integrated with geomechanics. Journal of Canadian Petroleum Technology, 32(05).
Neaupane, K. M., Yamabe, T., & Yoshinaka, R. (1999). Simulation of a fully coupled thermo–hydro–mechanical system in freezing and thawing rock. International Journal of Rock Mechanics and Mining Sciences, 36(5), 563-580.
Bear, J., Tsang, C. F., & De Marsily, G. (2012). Flow and contaminant transport in fractured rock. Academic Press.
Farquhar, R. A., Smart, B. D. G., Crawford, B. R., et al. (1993). Mechanical properties analysis: the key to understanding petrophysical properties stress sensitivity. SCA Paper, 9321.
Boutéca, M. J., Bary, D., Piau, J. M., et al. (1994). Contribution of poroelasticity to reservoir engineering: lab experiments, application to core decompression and implication in HP-HT reservoirs depletion. In SPE/ISRM Rock Mechanics in Petroleum Engineering (SPE-28093-MS). SPE.
Fung, L. S. K., Buchanan, L., & Wan, R. G. (1994). Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs. Journal of Canadian Petroleum Technology, 33(4).
Sukirman, Y. B., & Lewis, R. W. (1994). Three-Dimensional Fully Coupled Flow: Consolidation Modelling Using Finite Element Method. In SPE Asia Pacific Oil and Gas Conference and Exhibition (SPE-28755-MS). SPE.
Gutierrez, M., & Hansteen, H. (1994). Fully coupled analysis of reservoir compaction and subsidence. In SPE Europec featured at EAGE Conference and Exhibition? (SPE-28900-MS). SPE.
Ran, Q. Q., & Gu, X. Y. (1998). Coupled analysis of reservoir seepage and stress. Chinese Journal of Geotechnical Engineering, 20(2), 5.
Ran, Q. Q., & Li, S. L. (1997). Research on dynamic models of physical parameters in fluid-solid coupled reservoir numerical simulation. Petroleum Exploration and Development, 24(3), 5.
Ran, Q. Q., & Gu, X. Y. (1999). Numerical simulation of multiphase seepage in elastoplastic deformation reservoirs. Chinese Journal of Computational Mechanics, 16(1), 8.
Dong, P. C., Lang, Z. X., & Xu, X. H. (2000). Fluid-solid coupling analysis of reservoir deformation during oil well production. Journal of Geomechanics, 6(2).
Dong, P. C., & Xu, X. H. (1998). Mathematical model of reservoir fluid-solid coupling and its finite element equation. Acta Petrolei Sinica, 19(1), 7.
Xue, S. F., & Song, H. Z. (1999). Theoretical research on the coupling effect between immiscible saturated two-phase seepage and porous media I - Mathematical model. Seismology and Geology, 21(3), 243-252.
Xue, S. F., & Song, H. Z. (1999). Theoretical research on the coupling effect between immiscible saturated two-phase seepage and porous media II - Equation decoupling and finite element formula. Seismology and Geology, 21(3), 253-260.
Liu, J. J., Liu, X. G., Hu, Y. R., et al. (2002). Study on fluid-solid coupling seepage law in low-permeability reservoirs. Chinese Journal of Rock Mechanics and Engineering, 21(1), 88-92.
Xu, Z. H., & Xu, X. H. (1999). Fluid-solid coupling problem of seepage in confined strata under two-dimensional stress field. Chinese Journal of Rock Mechanics and Engineering, 18(6), 6.
Wang, Z. M. (2002). Research on reservoir thermo-hydro-mechanical coupling model and its application preliminary. (Doctoral dissertation, Southwest Petroleum Institute).
Xiong, W., Tian, G. L., Huang, L. X., et al. (2002). Fluid-solid coupling mathematical model of multiphase flow in deformable media. Chinese Journal of Hydrodynamics, Series A, 17(6), 770-776.
Fan, X. P., Li, X. S., Zhang, S. C., et al. (2000). Numerical simulation of fluid-solid coupling seepage in overall fracturing of low-permeability gas reservoirs. Petroleum Exploration and Development.
Ji, X. M., Bai, S. W., & Yang, C. H. (2003). Finite element calculation of fluid-solid coupling dual-medium model for fractured rock masses. Rock and Soil Mechanics, 24(5), 4.
Li, S. Q., & Xu, B. Y. (2001). Fluid-solid coupling theoretical model for dual-porosity media. Chinese Journal of Hydrodynamics, Series A, 16(4), 7.
Li, S. Q., Xu, B. Y., & Duan, Y. G. (2001). Fluid-solid coupling seepage in fractured reservoirs. Chinese Journal of Computational Mechanics, 18(2), 5.
Liu, J. J., Zhang, S. Z., Liu, X. G., et al. (2002). Fluid-solid coupling theory and numerical simulation for fractured low-permeability reservoirs. Acta Mechanica Sinica, 34(5), 6.
Liu, J. J. (2003). Fluid-solid coupling theory and application for fractured low-permeability reservoirs. Chinese Journal of Rock Mechanics and Engineering, 22(4), 104.
Richtmyer, R. D., He, X. C., Xu, J. F., et al. (1966). Difference methods for initial value problems. Science Press.
Javandel, I., & Witherspoon, P. A. (1968). Application of the Finite Element Method to Transient Flow in Porous Media. Society of Petroleum Engineers Journal, 8(03), 241-252.
Versteeg, H., & Malalasekera, W. (1995). An introduction to computational fluid dynamics: The finite volume method. Longman.
Li, R. X. (2005). Fundamentals of the finite volume method. National Defense Industry Press.
Liu, G. R. (2009). Meshfree methods: Moving beyond the finite element method (2nd ed.). CRC Press.
Gu, Y. T., & Ding, H. (2005). Meshless methods and their latest progress. Advances in Mechanics, 35(3), 323-337.
Zhang, X., & Liu, Y. (2004). Meshless methods. Tsinghua University Press.
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astrophysical Journal, 8(12), 1013-1024.
Libersky, L. D., Randles, P. W., Carney, T. C., et al. (1997). Recent improvements in SPH modeling of hypervelocity impact. International Journal of Impact Engineering, 20(6-10), 525-532.
Chen, J. K., Beraun, J. E., & Jih, C. J. (1999). An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics, 23(4), 279-287.
Nayroles, B., Touzot, G., & Villon, P. (1992). Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 10(5), 307-318.
Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229-256.
Lu, Y. Y., Belytschko, T., & Tabbara, M. (1995). Element-free Galerkin method for wave propagation and dynamic fracture. Computer Methods in Applied Mechanics and Engineering, 126(1-2), 131-153.
Belytschko, T., & Fleming, M. (1999). Smoothing, enrichment and contact in the element-free Galerkin method. Computers & Structures, 71(2), 173-195.
Ponthot, J. P., & Belytschko, T. (1998). Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 152(1-2), 19-46.
Krysl, P. (1995). Analysis of Thin Shell by the Element-Free Galerkin Method. Computational Mechanics, 17(1), 26-35.
Ivannikov, V., Tiago, C., & Pimenta, P. M. (2014). Meshless implementation of the geometrically exact Kirchhoff–Love shell theory. International Journal for Numerical Methods in Engineering, 100(1), 1-39.
Belytschko, T., Lu, Y. Y., Gu, L., et al. (1995). Element-free Galerkin methods for static and dynamic fracture. International Journal of Solids and Structures, 32(17-18), 2547-2570.
Kargarnovin, M. H., Toussi, H. E., & Fariborz, S. J. (2004). Elasto-plastic element-free Galerkin method. Computational Mechanics, 33, 206-214.
Liew, K. M., Ren, J., & Kitipornchai, S. (2004). Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method. Engineering Analysis with Boundary Elements, 28(5), 497-507.
Chen, W., Shen, L. J., Shen, Z. J., et al. (2005). Boundary knot method for Poisson equations. Engineering Analysis with Boundary Elements, 29(8), 756-760.
Chen, C. S., Golberg, M. A., & Hon, Y. C. (1998). The method of fundamental solutions and quasi-Monte-Carlo method for diffusion equations. International Journal for Numerical Methods in Engineering, 43(8), 1421-1435.
Gu, Y., Chen, W., Gao, H. W., et al. (2016). A meshless singular boundary method for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering, 107(2), 109-126.
Gu, Y., & Chen, W. (2012). Improved singular boundary method for simulating three-dimensional potential problems. Acta Mechanica Sinica, 44(2), 351-360.
Chen, K. H., Chen, J. T., & Kao, J. H. (2006). Regularized meshless method for solving acoustic eigenproblem with multiply-connected domain. Computer Modeling in Engineering and Sciences, 16(1), 27-39.
Young, D. L., Chen, K. H., & Lee, C. W. (2005). Novel meshless method for solving the potential problems with arbitrary domain. Journal of Computational Physics, 209(1), 290-321.
Chen, J. T., Chen, I. L., Chen, K. H., et al. (2004). A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function. Engineering Analysis with Boundary Elements, 28(5), 535-545.
Lu, Y. Y., Belytschko, T., & Gu, L. (1994). A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 113(3-4), 397-414.
Wang, C. A., Sadat, H., & Prax, C. (2012). A new meshless approach for three dimensional fluid flow and related heat transfer problems. Computers & Fluids, 69, 136-146.
Sadat, H., Wang, C. A., & Le Dez, V. (2012). Meshless method for solving coupled radiative and conductive heat transfer in complex multi-dimensional geometries. Applied Mathematics and Computation, 218(20), 10-25.
Benito, J. J., Urena, F., Gavete, L., et al. (2003). An h-adaptive method in the generalized finite differences. Computer Methods in Applied Mechanics and Engineering, 192(5-6), 735-759.
Zhou, W. Y., & Kou, X. D. (1998). Element-free method and its application in geotechnical engineering. Chinese Journal of Geotechnical Engineering, 20(1), 5-9.
Kou, X. D., & Zhou, W. Y. (2000). Approximate calculation of arch dam cracking using the element-free method. *Journal of Hydraulic Engineering, (10), 28-35.
Kou, X. D., & Zhou, W. Y. (2000). Tracking crack propagation using the element-free method. Chinese Journal of Rock Mechanics and Engineering, 19(1), 18-23.
Zhou, W. Y., Huang, Y. S., & Lin, P. (2005). Three-dimensional element-free Galerkin method and its application in arch dam analysis. *Journal of Hydraulic Engineering, (6), 644-649.
Huang, Y. S., Zhou, W. Y., & Hu, Y. J. (2006). Tracking crack propagation using the three-dimensional element-free Galerkin method. *Journal of Hydraulic Engineering, (1), 63-69.
Ge, J. H., Li, G. X., & Jie, Y. X. (2003). Application of the element-free method in seepage calculation with free surfaces. Chinese Journal of Computational Mechanics, 20(2), 241-243+254.
Zhang, W. X., & Pang, H. (2000). A new method for calculating two-parameter elastic foundation plates. Quarterly of Applied Mechanics, 21(2), 262-266.
Zhang, W. X., & Pang, H. (2000). Element-free method for calculating elastic foundation plates. Engineering Mechanics, 17(3), 138-144.
Wang, Z. L. (2004). Solving consolidation problems with the element-free Galerkin method. Chinese Journal of Rock Mechanics and Engineering, 23(7), 1141-1145.
Wang, Z. L., & Xu, Q. H. (2004). Application of the meshless method in two-dimensional consolidation problems of soil under static load. Chinese Journal of Geotechnical Engineering, 26(1), 152-154.
Zhang, Y. J., Wang, E. Z., & Wang, S. J. (2004). Numerical error analysis of solving consolidation equations with the meshless Galerkin method. Chinese Journal of Rock Mechanics and Engineering, 23(18), 3117-3121.
Pang, Z. H., Ge, X. R., & Wang, S. L. (1999). Application of the element-free Galerkin method (EFGM) in slope excavation problems. Rock and Soil Mechanics, 20(1), 62-65.
Pang, Z. H., & Zhu, Y. M. (2000). Solving contact problems with the element-free Galerkin method (EFGM). Journal of Hohai University (Natural Science Edition), 28(4), 54-58.
Pang, Z. H., Ge, X. R., & Wang, S. L. (2000). Simulating discontinuous surfaces with the element-free Galerkin method (EFGM). Journal of Engineering Geology, 8(3), 364-368.
Yang, H. T., & Liu, Y. (2003). An FEM-EFGM coupling technique and its application. Chinese Journal of Computational Mechanics, 20(5), 7.
He, P. X., Li, Z. R., & Wu, C. C. (2001). Coupling of the meshless method and finite element method and its application to fracture calculation of functionally graded materials. Journal of University of Science and Technology of China, 31(6), 8.
He, P. X., Li, Z. R., & Wu, C. C. (2006). Application of the coupling of the meshless method and finite element method in dynamic fracture research. Chinese Journal of Applied Mechanics, 23(2), 4.
He, P. X., Wu, C. C., Li, Z. R., et al. (2004). Coupling of the meshless Galerkin method and incompatible element method. Chinese Journal of Computational Mechanics, 21(4), 455-459.
Liu, T. X., Liu, G., & Xu, H. (2002). Research on the two-dimensional element-free Galerkin-finite element coupling method. Journal of Mechanical Strength, 24(4), 6.
Li, W. D., Wang, Y. H., & Chen, X. B. (2001). A new method for simulating crack propagation—the element-free Galerkin method. Rock and Soil Mechanics, 22(1), 33-36.
Li, W. D., Wang, Y. H., & Chen, X. B. (2001). Application of the meshless method in fracture mechanics. Chinese Journal of Rock Mechanics and Engineering, 20(4), 462-462.
Li, W. D., Wang, Y. H., & Tan, G. H. (2001). Application of the meshless method in elastoplastic problems. Acta Mechanica Solida Sinica, 22(4), 7.
Zhang, X., Liu, X. H., Song, K. Z., et al. (2001). Least-squares collocation meshless method. International Journal for Numerical Methods in Engineering, 51.
Zhang, X., Hu, W., Pan, X. F., et al. (2003). Weighted least squares meshless method. Acta Mechanica Sinica, 35(4), 7.
Zhang, X., Song, K. Z., Lu, M. W., et al. (2000). Meshless methods based on collocation with radial basis functions. Computational Mechanics, 26, 333-343.
Zhang, X., Song, K. Z., & Lu, M. W. (2000). Compactly supported trial function weighted residual method. In National Conference on Weighted Residual Methods and Their Engineering Applications (pp. ). Chinese Society of Theoretical and Applied Mechanics.
Cai, Y. C., Zhu, H. H., & Wang, J. H. (2003). Meshless local Petrov-Galerkin method based on Voronoi structure. Acta Mechanica Sinica, 35(2), 7.
Cai, Y. C., Li, X. J., & Zhu, H. H. (2003). Natural element method based on local Petrov-Galerkin process and its object-oriented design and implementation. Chinese Journal of Rock Mechanics and Engineering, 22(8), 1263-1263.
Cai, Y. C., & Zhu, H. H. (2003). Meshless methods in numerical calculation of geotechnical engineering and their automatic point placement technology. Rock and Soil Mechanics, 24(1), 4.
Lu, B., Ge, X. R., & Wang, S. L. (2005). Research on adaptive natural element method—error estimation. Chinese Journal of Rock Mechanics and Engineering.
Lu, B., Ge, X. R., & Wang, S. L. (2005). Research on numerical integration schemes of the natural element method. Chinese Journal of Rock Mechanics and Engineering, 24(11), 8.
Dai, B., & Wang, J. H. (2004). Principles of the natural element method and implementation of three-dimensional algorithms. Journal of Shanghai Jiao Tong University, 38(7), 4.
Luan, M. T., Tian, R., Yang, Q., et al. (2002). Application of the finite cover element-free method in friction contact problems of geotechnical weak tensile materials. Chinese Journal of Geotechnical Engineering, 24(2), 5.
Tian, R. (2000). Finite cover element-free method for continuous and discontinuous deformation analysis and its application research. (Doctoral dissertation, Dalian University of Technology).
Luan, M. T., Zhang, D. L., Yang, Q., et al. (2003). Application of the finite cover element-free method in numerical analysis of crack propagation. Chinese Journal of Geotechnical Engineering, 25(5), 527-531.
Luan, M. T., Yang, X. H., Tian, R., et al. (2005). Application of the finite cover element-free method in numerical analysis of fracture characteristics of multi-cracked rock masses. Chinese Journal of Rock Mechanics and Engineering, 24(24), 6.
Qiu, Y., You, C. F., Qi, H. Y., et al. (2005). Solving flow around a cylinder at different Re using the meshless method. Journal of Tsinghua University (Science and Technology), 45(2), 220-223.
Fang, Z., Li, Y., Lan, Q. L., et al. (2014). Numerical simulation of liquid sloshing based on the SPH method. Journal of China Three Gorges University (Natural Science Edition), 36(4), 67-70.
Wang, G., Sun, Y. D., & Ye, Z. Y. (2005). A meshless algorithm for calculating unsteady two-dimensional flows (in English). Chinese Journal of Aeronautics, 18(1), 8-14.
Zeng, Q. H., & Lu, D. T. (2005). Seepage problems with threshold pressure gradient and their meshless solutions. Chinese Journal of Computational Mechanics, 22(4), 443-446.
Zeng, Y. S., Lu, D. T., Yan, Z. L., et al. (2003). Preliminary application of the meshless method in reservoir engineering. Well Testing, 12(5), 9-10+13-74.
Huang, C. Q. (2007). Research on the theory and application of the meshless method. (Doctoral dissertation, China University of Petroleum).
Shu, H. M., Huang, C. Q., & Li, C. W. (2007). Meshless method analysis of oil-water two-phase seepage problems. Acta Petrolei Sinica, 28(6), 107-112.
Li, Y. K. (2007). Meshless numerical well testing for complex fault-block reservoirs. (Doctoral dissertation, China University of Petroleum).
Rao, X., Zhan, W., Zhao, H., et al. (2021). Application of the least-square meshless method to gas-water flow simulation of complex-shape shale gas reservoirs. Engineering Analysis with Boundary Elements, 129, 39-54.
Benito, J. J., Urena, F., & Gavete, L. (2001). Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling, 25(12), 1039-1053.
Gavete, L., Gavete, M. L., & Benito, J. J. (2003). Improvements of generalized finite difference method and comparison with other meshless method. Applied Mathematical Modelling, 27(10), 831-847.
Li, P. W., & Fan, C. M. (2017). Generalized finite difference method for two-dimensional shallow water equations. Engineering Analysis with Boundary Elements, 80, 58-71.
Gavete, L., Ureña, F., Benito, J. J., et al. (2011). Solving third and fourth order partial differential equations using GFDM. Application to solve problems of plates-cmmse10. International Journal of Computer Mathematics.
Qu, W., & He, H. (2020). A spatial–temporal GFDM with an additional condition for transient heat conduction analysis of FGMs. Applied Mathematics Letters, 110, 106579.
Wang, Y., Gu, Y., Fan, C. M., et al. (2018). Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials. Engineering Analysis with Boundary Elements, 94, 94-102.
Fu, Z. J., Xie, Z. Y., Ji, S. Y., et al. (2020). Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Engineering, 195, 106736.
Gu, Y., Wang, L., Chen, W., et al. (2017). Application of the meshless generalized finite difference method to inverse heat source problems. International Journal of Heat and Mass Transfer, 108, 721-729.
Benito, J. J., Ureña, F., Gavete, L., et al. (2017). Implementations with generalized finite differences of the displacements and velocity-stress formulations of seismic wave propagation problem. Applied Mathematical Modelling, 52, 1-14.
Xia, H., & Gu, Y. (2021). Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures. Applied Mathematics Letters, 117, 107084.
Xia, H., & Gu, Y. (2021). The generalized finite difference method for electroelastic analysis of 2D piezoelectric structures. Engineering Analysis with Boundary Elements, 124, 82-86.
Gu, Y., Qu, W., Chen, W., et al. (2019). The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems. Journal of Computational Physics, 384, 42-59.
Chen, S. Y., Hsu, K. C., & Fan, C. M. (2021). Improvement of generalized finite difference method for stochastic subsurface flow modeling. Journal of Computational Physics, 429, 110002.
Fan, C. M., & Li, P. W. (2014). Generalized finite difference method for solving two-dimensional Burgers’ equations. Procedia Engineering, 79, 55-60.
Li, P. W. (2021). Space–time generalized finite difference nonlinear model for solving unsteady Burgers’ equations. Applied Mathematics Letters, 114, 106896.
Fu, Z. J., Tang, Z. C., Zhao, H. T., et al. (2019). Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method. The European Physical Journal Plus, 134(1), 1-20.
Gu, Y., & Sun, H. G. (2020). A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives. Applied Mathematical Modelling, 78, 539-549.
Shen, S. (2002). The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. Computer Modeling in Engineering & Sciences, 3(1), 11-51.
Cheng, M., & Liu, G. R. (2002). A novel finite point method for flow simulation. International Journal for Numerical Methods in Fluids, 39(12), 1161-1178.
Sridar, D., & Balakrishnan, N. (2003). An upwind finite difference scheme for meshless solvers. Journal of Computational Physics, 189(1), 1-29.
Saucedo-Zendejo, F. R., Reséndiz-Flores, E. O., & Kuhnert, J. (2019). Three-dimensional flow prediction in mould filling processes using a GFDM. Computational Particle Mechanics, 6(3), 411-425.
Michel, I., Seifarth, T., Kuhnert, J., et al. (2021). A meshfree generalized finite difference method for solution mining processes. Computational Particle Mechanics, 8(3), 561-574.
Shao, M., Song, L., & Li, P. W. (2021). A generalized finite difference method for solving Stokes interface problems. Engineering Analysis with Boundary Elements, 132, 50-64.
Rao, X., Cheng, L., Cao, R., et al. (2020). A modified projection-based embedded discrete fracture model (pEDFM) for practical and accurate numerical simulation of fractured reservoir. Journal of Petroleum Science and Engineering, 187, 106852.
Rao, X., Xu, Y., Liu, D., et al. (2021). A general physics-based data-driven framework for numerical simulation and history matching of reservoirs. Advances in Geo-Energy Research, 5(4).
Rao, X., & Liu, Y. (2022). A Numerical Modelling Method of Fractured Reservoirs with Embedded Meshes and Topological Fracture Projection Configurations. CMES-Computer Modeling in Engineering & Sciences, 131(3).
Rao, X., Zhao, H., & Zhan, W. T. (2021). An Upwind General Finite Difference Method (GFDM) for Analysis of Heat and Mass Transfer in Porous Media. arXiv e-prints, arXiv:2112.11005.
Rao, X., Liu, Y., & Zhao, H. (2022). An upwind generalized finite difference method for meshless solution of two-phase porous flow equations. Engineering Analysis with Boundary Elements, 137, 105-118.
Liu, Y., Rao, X., Zhao, H., Zhan, W., Xu, Y., & Liu, Y. (2023). Generalized finite difference method based meshless analysis for coupled two-phase porous flow and geomechanics. Engineering Analysis with Boundary Elements, 146, 184-203.
Rao, X., Zhao, H., & Liu, Y. (2024). A novel meshless method based on the virtual construction of node control domains for porous flow problems. Engineering with Computers, 40(1), 171-211.
Rao, X., Xu, Y. F., Liu, W., Zhou, Y. H., & Liu, Y. N. (2024). Meshless extended finite volume method for compositional reservoir simulation. Chinese Journal of Computational Mechanics, 41(4).
Huang, H., Wei, J., Zhang, Z., Zhang, X., & Rao, X. (2025). Two-dimensional black-oil simulation using the meshless extended finite volume method. Physics of Fluids, 37(7).
Rao, X., Zhao, H., & Liu, Y. (2022). A meshless numerical modeling method for fractured reservoirs based on extended finite volume method. SPE Journal, 27(06), 3525-3564.