This paper presents a review of reservoir closed-loop optimization management technology, with a particular focus on its core software component—reservoir closed-loop optimization control technology. This technology constitutes a closed-loop process encompassing two fundamental steps: automatic history matching and production optimization. History matching involves refining model parameters to align numerical models with actual production dynamics. Subsequently, production optimization is performed based on the updated model. The goal is to maximize economic benefits or cumulative oil production by automatically identifying the optimal injection-production scheme. The mainstream methods in both areas can be categorized into gradient-based and gradient-free algorithms. Gradient-based algorithms offer fast convergence but are complex to implement and difficult to integrate with commercial simulators. In contrast, gradient-free algorithms provide greater versatility but may face challenges in computational efficiency or convergence accuracy. In recent years, to overcome the high computational cost associated with traditional numerical simulations, surrogate modeling techniques have emerged as a significant research focus. These techniques accelerate the optimization cycle by approximating the simulation process.
Download the full text PDF for viewing and using it according to the license of this paper.
References
Mohanty, K. K., Patil, S., & Kovscek, A. R. (2022). The digital transformation in upstream oil and gas: A review of intelligent oil fields and the application of data-driven analytics. SPE Journal, 27(1), 123–145. https://doi.org/10.2118/208552-PA
Wang, Y., Sun, H., & Oliver, D. S. (2023). Real-time production optimization of oil reservoirs using a machine learning-based closed-loop framework. Journal of Petroleum Science and Engineering, 220(Part A), 111182. https://doi.org/10.1016/j.petrol.2022.111182
Xu, L., Chen, F. F., & King, M. J. (2023). Digital twin for intelligent oil field development: A review of concepts, applications, and challenges. Energy Reports, 9, 2967–2981. https://doi.org/10.1016/j.egyr.2023.01.120
Jansen, J. D., Brouwer, D. R., Douma, S. G., & Van den Hof, P. M. J. (2021). Closed-loop reservoir management: An introductory review. SPE Journal, 26(3), 1357–1381. https://doi.org/10.2118/205356-PA
Chen, Y., Oliver, D. S., & Zhang, D. (2022). Efficient ensemble-based closed-loop production optimization. SPE Journal, 27(1), 688–710. https://doi.org/10.2118/209219-PA
Fonseca, R. M., Kahrobaei, S., Van Essen, G. M., & Jansen, J. D. (2023). From history matching to production optimization: A consistent closed-loop framework using adjoint-based methods. Computational Geosciences, 27(2), 317–335. https://doi.org/10.1007/s10596-022-10187-x
Liu, X., Zhang, K., & Reynolds, A. C. (2022). Accelerating closed-loop reservoir management with ensemble smoother and deep-learning-based proxy models. Journal of Petroleum Science and Engineering, 216(Part B), 110805. https://doi.org/10.1016/j.petrol.2022.110805
Tang, M., Liu, Y., & Durlofsky, L. J. (2023). A deep-learning-based closed-loop reservoir management framework that directly maps from production history to optimal future controls. SPE Journal, 28(4), 1947–1966. https://doi.org/10.2118/214646-PA
Emerick, A. A. (2022). Ensemble smoother with multiple data assimilation: Current status and future directions. Computational Geosciences, 26(6), 1493–1515. https://doi.org/10.1007/s10596-022-10170-6
Wang, H., & Li, G. (2023). Deep reinforcement learning for production optimization in reservoir management: Framework and application. Journal of Petroleum Science and Engineering, 220(Part A), 111235. https://doi.org/10.1016/j.petrol.2022.111235
Tan, T. B., & Kalogerakis, N. (1991). A fully implicit, three-dimensional, three-phase simulator with automatic history-matching capability [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/21205-MS
Zhang, F., & Reynolds, A. C. (2002). Optimization algorithms for automatic history matching of production data [Conference session]. Proceedings of the European Conference on the Mathematics of Oil Recovery.
Gavalas, G. R., Shah, P. C., & Seinfeld, J. H. (1976). Reservoir history matching by Bayesian estimation. Society of Petroleum Engineers Journal, 16(6), 337–350. https://doi.org/10.2118/5740-PA
Gao, G., & Reynolds, A. C. (2004). An improved implementation of the LBFGS algorithm for automatic history matching. SPE Journal, 9(3), 316–326. https://doi.org/10.2118/90058-MS
Tavakoli, R., & Reynolds, A. C. (2010). History matching with parameterization based on the SVD of a dimensionless sensitivity matrix. SPE Journal, 15(2), 495–508. https://doi.org/10.2118/118950-PA
Sarma, P., Durlofsky, L. J., & Aziz, K. (2012). A new approach to automatic history matching using kernel PCA [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/106176-MS
Jafarpour, B., & McLaughlin, D. B. (2008). History matching with an ensemble Kalman filter and discrete cosine parameterization. Computational Geosciences, 12(2), 227–244. https://doi.org/10.1007/s10596-008-9080-3
Jin, J., Li, S., Li, J., & Ding, F. (2024). Geological model calibration based on gradual deformation and connectivity function. Scientific Reports, 14(1), 29395. https://doi.org/10.1038/s41598-024-80363-9
Marteau, B., Ding, D. Y., & Dumas, L. (2014). A generalization of the local gradual deformation method using domain parameterization. Computers & Geosciences, 72, 233–243. https://doi.org/10.1016/j.cageo.2014.07.016
Wang, C., Li, G., & Reynolds, A. C. (2007). Production optimization in the context of closed-loop reservoir management [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/109805-MS
Li, G., & Reynolds, A. C. (2011). Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Computational Geosciences, 15(3), 451–462. https://doi.org/10.1007/s10596-010-9213-3
Marsily, G., Lavedan, C., Boucher, M., & Fasanino, G. (1984). Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In G. Verly (Ed.), Geostatistics for Natural Resources Characterization (pp. 831–849). Springer.
Abdassah, D., Mucharam, L., Soengkowo, I., Trikoranto, H., & Sumantri, R. (1996). Coupling seismic data with simulated annealing method improves reservoir characterization [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/36968-MS
Romero, C. E., Carter, J. N., Gringarten, A. C., & Zimmerman, R. W. (2000). A modified genetic algorithm for reservoir characterization [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/64765-MS
Sen, M. K., Datta-Gupta, A., Stoffa, P. L., Lake, L. W., & Pope, G. A. (1995). Stochastic reservoir modeling using simulated annealing and genetic algorithm [Conference session]. Society of Petroleum Engineers. https://doi.org/10.2118/24754-PA
Evensen, G. (2003). The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343–367. https://doi.org/10.1007/s10236-003-0036-9
Aanonsen, S. I., Nævdal, G., Oliver, D. S., Reynolds, A. C., & Vallès, B. (2009). The ensemble Kalman filter in reservoir engineering—a review. SPE Journal, 14(3), 393–412. https://doi.org/10.2118/117274-PA
Sun, M., Luo, Q., Kong, Z., Guo, M., Liu, M., & Qian, J. (2024). A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer. Hydrogeology & Engineering Geology, 51(3), 23–33. https://doi.org/10.16030/j.cnki.issn.1000-3665.202308022
Reynolds, A. C., He, N., & Oliver, D. S. (1999). Reducing uncertainty in geostatistical description with well-testing pressure data. In Reservoir Characterization: Recent Advances (pp. 149–162). American Association of Petroleum Geologists.
Liu, N., & Oliver, D. S. (2004). Evaluation of Monte Carlo methods for assessing uncertainty. SPE Journal, 9(2), 188–195. https://doi.org/10.2118/84936-PA
Ripley, B. D. (2009). Stochastic simulation. Wiley.
Guo, Z., & Reynolds, A. C. (2018). Robust life-cycle production optimization with a support-vector-regression proxy. SPE Journal, 23(6), 2409–2427. https://doi.org/10.2118/182645-PA
Cao, Z., Song, Q., Xing, K., Han, J., & Qie, D. (2025). A novel multihead attention-enhanced convolutional neural network–long short-term memory encoder–decoder for oil production forecasting. SPE Journal. https://doi.org/10.2118/223940-PA
Wu, G., Wang, F., Cheng, S., & Zhang, C. (2022). A single well production forecasting model of reservoir based on conditional generative adversarial net [Chinese journal article with English title]. Chinese Journal of Computational Physics, 39(4), 465–478. https://doi.org/10.19596/j.cnki.1001-246x.8480
Zhou, Y., Xu, Y., Rao, X., Hu, Y., Liu, D., & Zhao, H. (2021). Artificial neural network–based proxy model for fast performances’ forecast and inverse schedule design of steam-flooding reservoirs. Mathematical Problems in Engineering, 2021, Article 5527259. https://doi.org/10.1155/2021/5527259
Sun, W., & Durlofsky, L. J. (2017). A new data-space inversion procedure for efficient uncertainty quantification in subsurface flow problems. Mathematical Geosciences, 49(6), 679–715. https://doi.org/10.1007/s11004-016-9671-9
Sun, W., Hui, M., & Durlofsky, L. J. (2017). Production forecasting and uncertainty quantification for naturally fractured reservoirs using a new data-space inversion procedure. Computational Geosciences, 21(5), 1443–1458. https://doi.org/10.1007/s10596-017-9675-7
Sun, W., & Durlofsky, L. J. (2019). Data-space approaches for uncertainty quantification of CO2 plume location in geological carbon storage. Advances in Water Resources, 128, 234–255. https://doi.org/10.1016/j.advwatres.2019.04.014
Liu, D., Rao, X., Zhao, H., Xu, Y., & Gong, R. (2021). An improved data space inversion method to predict reservoir state fields via observed production data. Petroleum Science, 18(4), 1127–1142. https://doi.org/10.1016/j.petsci.2021.07.003
Brouwer, D. R., & Jansen, J. D. (2004). Dynamic optimization of water flooding with smart wells using optimal control theory. SPE Journal, 9(4), 391–402. https://doi.org/10.2118/78278-PA
Ibiam, E. (2021). Numerical simulation and optimisation of polymer flooding in a heterogeneous reservoir: constrained versus unconstrained optimisation [Doctoral dissertation, Heriot-Watt University]. Heriot-Watt University Research Portal. https://doi.org/10.17861/ea00ac27-40f8-4e9e-bc6c-02f5fb4b3a41
Zhang, K. (2008). Research on the theory of reservoir dynamic real-time optimization [Doctoral dissertation, China University of Petroleum]. (Original work published in Chinese)
Liu, Y., Zhao, W., Zhang, N., Lv, D., & Zhang, S. (2025). Gradient-free distributed online optimization in networks. Control Theory and Technology. https://doi.org/10.1007/s11768-025-00242-0
Chen, Y., & Oliver, D. S. (2009). Efficient ensemble-based closed-loop production optimization. SPE Journal, 14(4), 634–645. https://doi.org/10.2118/112257-PA
Silva, A. S., & Schiozer, D. J. (2025). Balancing conflicting objectives in pre-salt reservoir development: A robust multi-objective optimization framework. Unconventional Resources, 5, 100130. https://doi.org/10.1016/j.uncres.2024.100130
Brum, A., Coelho, G., Santos, A. A., & Schiozer, D. J. (2025). Estimation of distribution algorithms for well placement optimization in petroleum fields. Computational Geosciences, 29(1), 2. https://doi.org/10.1007/s10596-024-10331-9
Wu, S., Liu, L., Wu, Y., Zhang, Y., Xie, W., & Jiang, H. (2025). Ant colony optimization for accelerated pathway identification in connection element method reservoir models: A fast-track solution for large-scale simulations. Processes, 13(2), 404. https://doi.org/10.3390/pr13020404
Danes, L. H., Avansi, G. D., & Schiozer, D. J. (2025). Using surrogates as faster objective function estimators for oil production strategy optimization in a real-case reservoir. SPE Journal. https://doi.org/10.2118/225411-PA
Yousefzadeh, R., Kazemi, A., Al-Hmouz, R., & Al-Moosawi, I. (2025). Determination of optimal oil well placement using deep learning under geological uncertainty. Geoenergy Science and Engineering, 246, 213621. https://doi.org/10.1016/j.geoen.2025.213621
Foroud, T., Baradaran, A., & Seifi, A. (2018). A comparative evaluation of global search algorithms in black box optimization of oil production: A case study on Brugge field. Journal of Petroleum Science and Engineering, 167, 131–151. https://doi.org/10.1016/j.petrol.2018.04.015
Golzari, A., Haghighat, S., & Jamshidi, S. (2015). Development of an adaptive surrogate model for production optimization. Journal of Petroleum Science and Engineering, 133, 677–688. https://doi.org/10.1016/j.petrol.2015.07.016
Chen, G., Zhang, K., Zhang, L., Xue, X., & Li, C. (2020). Global and local surrogate-model assisted differential evolution for waterflooding production optimization. SPE Journal, 25(1), 105–118. https://doi.org/10.2118/199340-PA
Jiang, S. (2018). Data-space inversion with variable well controls in the prediction period [Master's thesis, Stanford University].
Jiang, S., Sun, W., & Durlofsky, L. J. (2020). A data-space inversion procedure for well control optimization and closed-loop reservoir management. Computational Geosciences, 24(1), 361–379. https://doi.org/10.1007/s10596-019-09920-w
Kim, Y., Min, B., Sun, A., Ren, B., & Jeong, H. (2023). Comparative study of data-driven forecasting methods for reservoir production using data-space inversion and deep learning. Fuel, 332(Part 2), 127067. https://doi.org/10.1016/j.fuel.2022.127067